Development and mechanical strength properties of a new lightweight soil

2014 ◽  
Vol 72 (4) ◽  
pp. 1109-1116
Author(s):  
Tae-Hyung Kim ◽  
Gi-Chun Kang ◽  
Lee-Keun Park
2013 ◽  
Vol 477-478 ◽  
pp. 931-935
Author(s):  
Chang Zheng Sun ◽  
Xiao Ping Zhang ◽  
Hai Nan Zhao ◽  
Qiang Gao

To explore retarders on performance of ultra-early strength grouting material, Retarder, which are commonly used in the market after a preliminary screening, are further tested and analyzed for initial fluidity, setting time and mechanical strength properties of super early strength grouting material. The results show that: When borax content is 0.4%, the initial fluidity, final setting time, workability, mechanical strength are the best.


2019 ◽  
Vol 1 (6) ◽  
pp. 235-239
Author(s):  
Sabarinathan K ◽  
Ashwathi R

The growing environmental awareness and Construction waste, is increasing day by day which in turn makes the world in seeking for examining the characteristics of Construction waste and obtaining a solution by using its reliable segments such that it can be used as a raw material and Conservation the natural recourses like Coarse aggregate


2017 ◽  
Vol 758 ◽  
pp. 56-60 ◽  
Author(s):  
Arief Cahyanto ◽  
Atina Ghina Imaniyyah ◽  
Myrna Nurlatifah Zakaria ◽  
Zulia Hasratiningsih

Mechanical strength is one of the key factors for clinical application of injectable carbonate apatite (CO3Ap) cement. Incorporation of polymeric additives into the mixing liquid of injectable bone cement has been known to improve cement injectability. The aim of this study is to determine whether incorporation of sodium carboxymethyl cellulose (Na CMC) into the mixing liquid would affect the diametral tensile strength (DTS) of injectable CO3Ap cement. In the present study, Na CMC, a polymeric additive and a cellulose derivative, was used to promote the injectability of CO3Ap cement. Three groups of CO3Ap cement samples consist of CaCO3 and CaHPO4 powder in each group were mixed with 0.5 %, 1%, and 2% Na CMC solution incorporated to 0.2 mol/L Na2HPO4 solution. As a control, powder mixed with 0.2 mol/L Na2HPO4 solution was used. Samples were kept in an incubator (37°C, 100% relative humidity, 24 hours). The mechanical strength properties were evaluated by diametral tensile strength (DTS). The average DTS of samples containing 0.5%, 1%, and 2% Na CMC were 3.19 MPa, 3.57 MPa, and 3.06 MPa, respectively. While the average DTS of the control group was 3.29 MPa. The groups containing Na CMC in all concentrations showed no statistical difference (p>0.05) on DTS compared to the control group. The injectability improved as the concentration of Na CMC increased. In conclusion, revealed that Na CMC does not affect the mechanical strength of CO3Ap cement. Therefore, it may be considered as an effective material to promote cement injectability. Further study of additives that can be used to promote the injectability of CO3Ap cement and enhance the mechanical strength awaits based on this initial finding.


2019 ◽  
Vol 3 (62) ◽  
pp. 13-18 ◽  
Author(s):  
Vladimir I. Orobinsky ◽  
◽  
Aleksey М. Gievsky ◽  
Aleksandr P. Tarasenko ◽  
Aleksey V. Chernyshov ◽  
...  

1984 ◽  
Vol 19 (4) ◽  
pp. 550-552
Author(s):  
A. D. Valtneris ◽  
G. V. Dzyak ◽  
G. M. Yakovlev ◽  
N. V. Galkin ◽  
L. N. Lukanichev ◽  
...  

Author(s):  
Stefano Rossi ◽  
Massimo Calovi

Graphene represents an innovative material, which possesses a unique combination of properties. The remarkable features of this material allow it to be often used as a reinforcing filler in organic based coatings. The excellent conductivity and mechanical strength properties of graphene produce a significant increase in the performance of the polymer matrix. Recently, however, scholars have focused on the barrier effect properties that can be provided by graphene flakes to obtain high corrosion resistance coatings. If well distributed in the polymeric matrix, in fact, the graphene-based sheets are able to provide a high resistance to the passage of aggressive ions, fundamental for the development of corrosion processes on the metal substrate. The distribution of graphene-based fillers, however, is a critical aspect, which can be improved by means of certain oxidation and functionalization processes of graphene flakes. Recent studies have shown the possibility of combining the excellent features of cataphoretic processes with the remarkable protective properties of graphene-based fillers in the creation of high-performance multifunctional composite coatings. The functionalized graphene oxide flakes, in the correct amount, can in fact increase the protective performance of cataphoretic coatings, as well as providing additional features such as mechanical strength and high conductivity.


Sign in / Sign up

Export Citation Format

Share Document