Artocarpus altilis (breadfruit) skin as a potential low-cost biosorbent for the removal of crystal violet dye: equilibrium, thermodynamics and kinetics studies

2014 ◽  
Vol 73 (7) ◽  
pp. 3239-3247 ◽  
Author(s):  
Linda B. L. Lim ◽  
Namal Priyantha ◽  
Nur Hakimah Mohd Mansor
2018 ◽  
Vol 930 ◽  
pp. 254-257 ◽  
Author(s):  
Francisca Pereira de Araújo ◽  
Josy Anteveli Osajima ◽  
Mônica Regina Silva de Araujo ◽  
Edson Cavalcanti da Silva Filho ◽  
João Sammy Nery de Souza

Polystyrene is commercial polymer of extensive use in industrial scale due to great physical and chemical properties and low cost. Lifespan of polymer materials can be changed by incorporation of additions to polymeric matrix.The present study aimed to evaluate the influence of crystal violet dye in polystyrene matrices when irradiated by visible radiation. The samples were studied in the form of films, in which solution of crystal violet (5.0x10-4mol.L-1) was added to the PS solution (8% w / w). The films were irradiated with commercial lamp for 150 hours and analyzed with UV-Vis and FTIR. The results showed that the dye degraded at a rate of 16%, however the FTIR analysis revealed that polystyrene did not degrade under the conditions studied, since no formation of carbonyl compounds was observed.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ilyasse Loulidi ◽  
Fatima Boukhlifi ◽  
Mbarka Ouchabi ◽  
Abdelouahed Amar ◽  
Maria Jabri ◽  
...  

Agricultural waste can be exploited for the adsorption of dyes, due to their low cost, availability, cost-effectiveness, and efficiency. In this study, we were interested in the elimination of crystal violet dye, from aqueous solutions, by adsorption on almond shell-based material, as a low-cost and ecofriendly adsorbent. The almond shells were first analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction; then, the influence of adsorbent dose, initial dye concentration time, and pH were studied to assess adsorption capacity under optimal experimental conditions. Experimental results indicate that almond shell adsorbent removes about 83% of the dye from the solutions at room temperature and in batch mode; the kinetic study showed that the equilibrium time is about 90 min, and the model of pseudo-second order could very well describe adsorption kinetics. The modulation of adsorption isotherms showed that retention follows the Langmuir model. The thermodynamic study has shown that the adsorption is endothermic (ΔH° > 0) and spontaneous (ΔG° < 0).


2021 ◽  
Author(s):  
CI Chemistry International

Adsorption of crystal violet dye from aqueous solutions applying olive leaves powder (OLP) as a biosorbent has been examined under various experimental circumstances. The influence of contact time, pH, initial concentration of studied dye and adsorbent dose on the adsorption process has been investigated applying batch experiments. The concentration of remaining dye has been determined using molecular absorption spectrometry at wave length of 580 nm. The maximum removal of studied dye has been realized at pH 7.5 with a percent removal of 99.2% after 20 min of agitation time. Langmuir, Freundlich, and Temkin isotherm models exemplify the best fit for the experimental data; while the elevated adsorption capacity was 181.1 mg.g1. Adsorption kinetics of crystal violet was expected sufficiently with the empirical pseudo-second-order model. Corresponding to the adsorption capacity, olive leaves powder thought as a low cost, effective, and environmentally friendly biosorbent for the removal of crystal violet dye from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document