Compressive Deformation Behavior of Highly Porous AA2014-Cenosphere Closed Cell Hybrid Foam Prepared Using CaH2 as Foaming Agent: Comparison with Aluminum Foam and Syntactic Foam

2016 ◽  
Vol 70 (7) ◽  
pp. 1827-1840 ◽  
Author(s):  
Shyam Birla ◽  
D. P. Mondal ◽  
S. Das ◽  
N. Prasanth ◽  
A. K. Jha ◽  
...  
2005 ◽  
Vol 46 (7) ◽  
pp. 1677-1680 ◽  
Author(s):  
Masataka Hakamada ◽  
Tatsuho Nomura ◽  
Yasuo Yamada ◽  
Yasumasa Chino ◽  
Youqing Chen ◽  
...  

2013 ◽  
Vol 28 (17) ◽  
pp. 2528-2538 ◽  
Author(s):  
Dehi Pada Mondal ◽  
Nidhi Jha ◽  
Anshul Badkul ◽  
Bilal Gul ◽  
Shrinivas Rathod ◽  
...  

Abstract


2020 ◽  
Vol 52 (3) ◽  
pp. 451-457
Author(s):  
K. S. Verma ◽  
D. Muchhala ◽  
S. Panthi ◽  
D. P. Mondal

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1792 ◽  
Author(s):  
Xiong Wan ◽  
Kai Zhu ◽  
Yanjin Xu ◽  
Baoshuai Han ◽  
Tao Jing

It is well-known that cell morphology plays a vital role in the mechanical properties of the closed-cell aluminum foam. In this work, a three-dimensional (3D) realistic structure was obtained by using the synchrotron X-ray micro-tomography technique and then translated into a numerical model for a further finite-element simulation. In order to investigate the early compressive deformation in the closed-cell aluminum foam, we chose three different strain levels, namely, 0.2% (initiation of plastic strain), 2.8% (propagation of plastic strain band), and 6% (formation of collapse band) to discuss the evolution forms of plastic strain concentration by simulation. We found that the curvature, anisotropy, and distribution of cell volume of adjacent cells played a vital role in the initiation of plastic strain. Furthermore, the phenomenon that plastic strain band propagated along the direction aligned 45° with respect to the orientation of the compression was also investigated in the propagation of the plastic strain band and formation of the collapse band. Finally, the comparison between experimental results and simulation results was performed to illustrate the early location of these three different levels in the whole compressive deformation.


2007 ◽  
Vol 353-358 ◽  
pp. 651-654 ◽  
Author(s):  
M.F. Adziman ◽  
S. Deshpande ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto

The stochastic nature of aluminum foam structure, having a random distribution of voids, makes it difficult to model its compressive deformation behavior accurately. In this paper, a 2-dimensional simplified modeling approach is introduced to analyze the compressive deformation behavior that occurs in Alporas aluminum foam (Al foam). This has been achieved using image analysis on real undeformed aluminum foam images obtained by VHX-100 digital microscope. Finite element mesh for the cross sectional model is generated with Object Oriented Finite element (OOF) method combined with ABAQUS structural analysis. It is expected that OOF modeling enable prediction of the origin of failure in terms of localized deformation with respect to the microstructural details. Furthermore, strain concentration sites leading to the evolution of the deformation band can be visualized. Thus, this investigation addresses the local inhomogeneity in the Al foam structure. This study implies that the OOF modeling approach combined with experimental observations can provide better insight into the understanding of aluminum foam compressive deformation behavior.


2017 ◽  
Vol 62 (2) ◽  
pp. 1353-1357
Author(s):  
G.W. Hwang ◽  
J.U. Cho

AbstractAn aluminum foam added with foaming agent, is classified into an open-cell type for heat transfer and a closed-cell type for shock absorption. This study investigates the characteristic on the torsion of aluminum foam for a closed-cell type under impact. The fracture characteristics are investigated through the composite of five types of aluminum foam (the thicknesses of 25, 35, 45, 55 and 65 mm), when applying the torsional moment of impact energy on the junction of a porous structure attached by an adhesive. When applying the impact energy of 100, 200 and 300J, the aluminum foams with thicknesses of 25 mm and 35 mm broke off under all conditions. For the energy over 200J, aluminums thicker than 55 mm continued to be attached. Furthermore, the aluminum specimens with thicknesses of 55 mm and 65 mm that were attached with more than 30% of bonding interface remained, proving that they could maintain bonding interface against impact energy. By comparing the data based on the analysis and test result, an increase in the thickness of specimen leads to the plastic deformation as the stress at the top and bottom of bonding interface moves to the middle by spreading the stress horizontally. Based on this fracture characteristic, this study can provide the data on the destruction and separation of bonding interface and may contribute to the safety design.


Sign in / Sign up

Export Citation Format

Share Document