scholarly journals A Critical Review on Nickel–Titanium Thin-Film Shape Memory Alloy Fabricated by Magnetron Sputtering and Influence of Process Parameters

Author(s):  
Bharat C. G. Marupalli ◽  
Ajit Behera ◽  
S. Aich
Author(s):  
Mohammadreza Zamani ◽  
Mahmoud Kadkhodaei ◽  
Mohsen Badrossamay ◽  
Ehsan Foroozmehr

Nitinol is a well-known shape memory alloy (SMA) which is widely used due to its unique properties such as shape memory effect and pseudoelasticity. However, challenges fabricating Nitinol parts have limited the use of this alloy. Nowadays, additive manufacturing methods, specifically selective laser melting (SLM), are being used as an alternative to conventional methods for fabricating Nitinol specimens. Achieving a dense structure and controlling the transformation temperatures in such products have been among the most important challenges for several research groups. In the present study, fabrication of dense Nitinol parts by SLM together with control of their transformation temperatures is investigated with the main purpose of achieving pseudoelastic products at room temperature. For this purpose, the effect of process parameters on density, transformation temperatures, microstructure, hardness, and shape memory response are studied. The influence of process parameters on transformation temperatures varies depending on the amount of power so that the effect of scan tracks spacing for high powers is more pronounced than that for low powers. The hardness and compressive strength of the parts are also affected by the process parameters. Accordingly, optimal parameters are found to fabricate dense pseudoelastic parts with the ability of strain recovery at ambient temperature.


1992 ◽  
Vol 276 ◽  
Author(s):  
A. David Johnson ◽  
J. D. Busch ◽  
Curtis A. Ray ◽  
Charles Sloan

ABSTRACTThin film shape memory alloy has been integrated with silicon in a new actuation mechanism for micro-electro-mechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy micro-actuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.


2012 ◽  
Vol 185 ◽  
pp. 25-27 ◽  
Author(s):  
Nitin Choudhary ◽  
D.K. Kharat ◽  
Davinder Kaur

Nickel-titanium (NiTi) alloys are high-performance shape memory alloy actuator materials [1]. These alloys are metals possessing a memory, which can be triggered thermally or mechanically. Thin film of nickel-titanium shape memory alloy (SMA) is an excellent candidate for micro electric mechanical systems (MEMS). On the other hand, PZT is well known for its superior ferroelectric, dielectric and piezoelectric properties [2]. Integrating a ferroelectric (PZT) with ferroelastic (NiTi) material is technically interesting as the resulting heterostructure may then produce the properties associated with both of the materials and enhances the performance of MEMS based devices [3]. An important issue in the synthesis of NiTi/PZT hybrid heterostructure is the formation of appropriate crystalline phases of each material. The interdiffusions present at the interface of NiTi and PZT layer makes it difficult to obtain the optimal properties of both the components suitably at lower thickness values. With the miniaturization of active thin film devices, particularly for MEMS applications, it is desirable to obtain the best properties at lower thickness values. Therefore, in the present study, we have tried to lower the thickness of top NiTi films with the help of thin TiOx buffer layer between PZT and NiTi films. As expected, the excellent structural, electrical and mechanical properties of the NiTi/PZT heterostructure were achieved at lower thickness values.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
S. Ahmadi ◽  
K. Jacob ◽  
F. Wendler ◽  
A. Padhy ◽  
M. Kohl

2015 ◽  
Vol 284 ◽  
pp. 90-93 ◽  
Author(s):  
Hikmet Cicek ◽  
Ihsan Efeoglu ◽  
Yaşar Totik ◽  
Kadri Vefa Ezirmik ◽  
Ersin Arslan

2008 ◽  
Vol 41-42 ◽  
pp. 135-140 ◽  
Author(s):  
Qiang Li ◽  
Xu Dong Sun ◽  
Jing Yuan Yu ◽  
Zhi Gang Liu ◽  
Kai Duan

Artificial neural network (ANN) is an intriguing data processing technique. Over the last decade, it was applied widely in the chemistry field, but there were few applications in the porous NiTi shape memory alloy (SMA). In this paper, 32 sets of samples from thermal explosion experiments were used to build a three-layer BP (back propagation) neural network model. According to the registered BP model, the effect of process parameters including heating rate ( ), green density ( ) and particle size of Ti ( d ) on compressive properties of reacted products including ultimate compressive strength ( v D σ ) and ultimate compressive strain (ε ) was analyzed. The predicted results agree with the actual data within reasonable experimental error, which shows that the BP model is a practically very useful tool in the properties analysis and process parameters design of the porous NiTi SMA prepared by thermal explosion method.


Sign in / Sign up

Export Citation Format

Share Document