Adjustment of the scan track spacing and linear input energy to fabricate dense, pseudoelastic Nitinol shape memory alloy parts by selective laser melting

Author(s):  
Mohammadreza Zamani ◽  
Mahmoud Kadkhodaei ◽  
Mohsen Badrossamay ◽  
Ehsan Foroozmehr

Nitinol is a well-known shape memory alloy (SMA) which is widely used due to its unique properties such as shape memory effect and pseudoelasticity. However, challenges fabricating Nitinol parts have limited the use of this alloy. Nowadays, additive manufacturing methods, specifically selective laser melting (SLM), are being used as an alternative to conventional methods for fabricating Nitinol specimens. Achieving a dense structure and controlling the transformation temperatures in such products have been among the most important challenges for several research groups. In the present study, fabrication of dense Nitinol parts by SLM together with control of their transformation temperatures is investigated with the main purpose of achieving pseudoelastic products at room temperature. For this purpose, the effect of process parameters on density, transformation temperatures, microstructure, hardness, and shape memory response are studied. The influence of process parameters on transformation temperatures varies depending on the amount of power so that the effect of scan tracks spacing for high powers is more pronounced than that for low powers. The hardness and compressive strength of the parts are also affected by the process parameters. Accordingly, optimal parameters are found to fabricate dense pseudoelastic parts with the ability of strain recovery at ambient temperature.

2015 ◽  
Vol 18 (suppl 2) ◽  
pp. 35-38 ◽  
Author(s):  
Piter Gargarella ◽  
Cláudio Shyinti Kiminami ◽  
Eric Marchezini Mazzer ◽  
Régis Daniel Cava ◽  
Leonardo Albuquerque Basilio ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1228
Author(s):  
Junjie Jiang ◽  
Jianming Chen ◽  
Zhihao Ren ◽  
Zhongfa Mao ◽  
Xiangyu Ma ◽  
...  

With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (EF) had a significant influence on the quality of the lower surface. Excessive EF led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low EF easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low EF and high EF, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface.


2014 ◽  
Vol 698 ◽  
pp. 333-338 ◽  
Author(s):  
Vadim Sh. Sufiiarov ◽  
Evgenii V. Borisov ◽  
Igor A. Polozov

The results of the research on selective laser melting process of the Inconel 718 superalloy powder under conditions of additive manufacturing of parts for special purposes are presented. The influence of process parameters on the quality of manufactured parts is shown. Process parameters which allow manufacturing parts with the density close to 100%, are determined. Also, the results of mechanical tests and investigation of microstructure are presented.


Sign in / Sign up

Export Citation Format

Share Document