Microstructure and Wear Characteristics of Nano Y2O3 Particles Reinforced A356 Alloy Composites Synthesized Through Novel Ultrasonic Assisted Stir Casting Technique

Author(s):  
T. Satish Kumar ◽  
Jayakrishnan Nampoothiri ◽  
S. Shalini ◽  
Titus Thankachan
2020 ◽  
Vol 856 ◽  
pp. 29-35
Author(s):  
Sweety Mahanta ◽  
M. Chandrasekaran ◽  
Sutanu Samanta

Aluminium matrix composites (AMCs) have emerged as the substitute for the monolithic (unreinforced) materials over the past few decades. The applications of AMCs are common in automotive, aerospace, defence and biomedical sectors due to its lower weight, high strength, high resistance against corrosion and high thermal and electrical conductivity. In this work, it is aimed fabricate a new class Al 7075 based hybrid composites reinforcing with nanoparticulates suitable for automotive application. Al7075 reinforced with fixed quantity of boron carbide (B4C) (1.5 wt.%) and varying wt % of flyash (0.5 wt.%, 1.0 wt.%, 1.5 wt.%) is fabricated using ultrasonic-assisted stir casting technique. Physical and mechanical characterization such as density, porosity, micro hardness, tensile strength and impact strength were estimated for three different compositions. The tensile strength and percentage increase in hardness value of the nanocomposite Al7075-B4C (1.5 wt. %)-flyash (0.5 wt. %): HNC3 found maximum as 294 MPa and 32.93%. In comparison with Al7075 alloy the impact strength of HNC3 shows the highest percentage of 9.31% respectively.


Sign in / Sign up

Export Citation Format

Share Document