scholarly journals A Study on the Suitability of Mahanadi Riverbed Sand as an Alternative to Silica Sand for Indian Foundry Industries

Author(s):  
Ramesh Kumar Nayak ◽  
Jatin Sadarang
Keyword(s):  
Author(s):  
Richard S. Thomas ◽  
Prabir K. Basu ◽  
Francis T. Jones

Silicon tetrachloride, used in industry for the production of highest purity silicon and silica, is customarily manufactured from silica-sand and charcoal.SiCl4 can also be made from rice hulls, which contain up to 20 percent silica and only traces of other mineral matter. Hulls, after carbonization, actually prove superior as a starting material since they react at lower temperature. This use of rice hulls may offer a new, profitable solution for a rice mill byproduct disposal problem.In studies of the reaction kinetics with carbonized hulls, conversion of SiO2 to SiCl4 was found to proceed within a few minutes to a constant, limited yield which depended reproducibly on the ambient temperature of the reactor. See Fig. 1. This suggested that physical or chemical heterogeneity of the silica in the hull structure might be involved.


Author(s):  
W. Bussiere ◽  
D. Rochette ◽  
T. Latchimy ◽  
G. Velleaud ◽  
P. Andre
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Suharto Suharto ◽  
Muhammad Amin ◽  
Muhammad Al Muttaqii ◽  
Syafriadi Syafriadi ◽  
Kiki Nurwanti

Experimental study on the use of basalt stone originated from Lampung has been conducted to evaluate its potential for a partial substitute of raw material in production of cement clinker. The basalt stone contains minerals of anorthite, augite, and albite phases that are required for clinker formation. In this study, the main raw materials were 80% limestone, 10% silica sand, 9% clay and 1% iron sand. The raw material in these experiments were mixtures 90% or 80% of the main raw material and 10% or 20% of basalt stone. The effect of adding coal to raw materials was also studied to see the possibility of an increase in clinkerization temperature inside the raw material mixture, and at the same time to see the effect of coal ash on clinker composition. Clinker obtained from heating of raw materials at a temperature of 1100oC had LSF of 94.1% and 95.1% (heating time of 1 and 3 hours). If heating is carried out at 1200oC, the clinker had LSF of 97.7% and 98.0% (heating time of 2 and 3 hours, respectively). Depending on the temperature and duration of heating, the clinker mostly had SM in the range of 2.18-2.40% , and AM in the range of 0,78-1.80%. Characterization using XRD showed that the clinker consisted of larnite and gehlenite phases, and dominated by CaO.Batu basalt Lampung telah diuji potensinya sebagai pengganti sebagian bahan baku utama pembuatan klinker semen. Batu basalt tersebut memiliki mineral-mineral dalam fase anorthite, augite, dan albite yang diperlukan pada pembentukan klinker. Pada penelitian ini, bahan baku utama adalah batu kapur 80%, pasir silika 10%, tanah liat 9% dan pasir besi 1%. Campuran bahan baku klinker adalah 90% atau 80% bahan baku utama dan 10% atau 20% batu basalt. Efek penambahan batubara ke dalam bahan baku klinker juga dipelajari untuk melihat kemungkinan kenaikan temperatur klinkerisasi di dalam campuran bahan baku, dan sekaligus untuk melihat efek abu batubara terhadap komposisi klinker. Klinker hasil pemanasan bahan baku pada temperatur 1100oC memiliki LSF 94,1% dan 95,1% (lama pemanasan 1 dan 3 jam). Jika pemanasan dilakukan pada 1200oC, klinker memilik LSF 97,7% dan 98,00% (lama pemanasan 2 dan 3 jam). Tergantung pada temperatur dan lama pemanasan, klinker hasil percobaan ini umumnya memiliki SM 2,18-2,40%, dan AM antara 0,78-1,80%. Karakterisasi dengan XRD menunjukkan bahwa klinker terdiri dari fase larnite dan gehlenite, dan didominasi CaO.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 449f-450
Author(s):  
Lisa M. Barry ◽  
Michael N. Dana

Legumes are grown as nurse crops in agriculture because they increase soil microbial life and productivity. Native legumes have potential in ecological restoration to mimic the benefits found in agriculture plus they enhance the restored ecosystem. This study was initiated to compare the growth rates, nodulation characteristics, and nitrogen fixation rates of a native versus a non-native legume. The two legumes were partridge pea (Cassia fasciculata); a native, wild, annual legume and soybean (Glycine max `Century Yellow); a domesticated, agricultural, annual legume native to Asia. Plants were grown for 11 weeks in pots containing silica sand and received a nitrogen-free Hoagland's nutrient solution. Beginning at week 12, plants were harvested weekly for four consecutive weeks. Nodulated root systems were exposed to acetylene gas and the resulting ethylene amounts were measured. The two legumes exhibited significant differences in nodule size and shape and plant growth rate. In soybean, nodules were large, spherical, and clustered around the taproot while in partridge pea, nodules were small, irregularly shaped, and spread throughout the fibrous root system. Soybean plants had a significantly faster growth rate at the onset of the experiment but partridge pea maintained a constant growth rate and eventually exceeded soybean plant size. In spite of these observed differences, partridge pea and soybean plants were equally efficient at reducing acetylene to ethylene. These results indicate partridge pea has the potential to produce as much nitrogen in the field as soybean. Native legumes such as partridge pea deserve further research to explore their use as nurse crops in agricultural or restoration regimes.


1970 ◽  
Vol 53 (1) ◽  
pp. 3-6
Author(s):  
R. Bruce Klemm ◽  
Mary E. Ambrose Klemm

Abstract The AOAC official method, 24.029–24.035, for the determination of fluorine in foods was modified slightly to o btain quantitative recoveries of fluorine from samples of fish protein concentrate (FPC). The most important alterations include the use of steam distillation, the addition of finely ground silica sand in the distillation, a decrease in the distillation temperature, and the utilization of direct titration. Recoveries of fluoride added to FPC before ashing, using this modified method, averaged 96.0 ± 3.0%. Our results are in agreement with those of several other analysts who used a variety of methods.


2021 ◽  
Vol 9 (1) ◽  
pp. 104975
Author(s):  
Saber Abdulhamid Alftessi ◽  
Mohd. Hafiz Dzarfan Othman ◽  
Mohd. Ridhwan Adam ◽  
Twibi Mohamed Farag ◽  
Ahmad Fauzi Ismail ◽  
...  

Author(s):  
Naoto Kodama ◽  
Koya Nakamura ◽  
Yasunobu Yokomizu ◽  
Asato Takahashi ◽  
Naoki Yamamura
Keyword(s):  

2020 ◽  
Vol 11 (1) ◽  
pp. 210
Author(s):  
Viktor Stenberg ◽  
Magnus Rydén ◽  
Tobias Mattisson ◽  
Anders Lyngfelt

Oxygen carrier aided combustion (OCAC) is utilized to promote the combustion of relatively stable fuels already in the dense bed of bubbling fluidized beds by adding a new mechanism of fuel conversion, i.e., direct gas–solid reaction between the metal oxide and the fuel. Methane and a fuel gas mixture (PSA off-gas) consisting of H2, CH4 and CO were used as fuel. Two oxygen carrier bed materials—ilmenite and synthetic particles of calcium manganate—were investigated and compared to silica sand, an in this context inert bed material. The results with methane show that the fuel conversion is significantly higher inside the bed when using oxygen carrier particles, where the calcium manganate material displayed the highest conversion. In total, 99.3–99.7% of the methane was converted at 900 °C with ilmenite and calcium manganate as a bed material at the measurement point 9 cm above the distribution plate, whereas the bed with sand resulted in a gas conversion of 86.7%. Operation with PSA off-gas as fuel showed an overall high gas conversion at moderate temperatures (600–750 °C) and only minor differences were observed for the different bed materials. NO emissions were generally low, apart from the cases where a significant part of the fuel conversion took place above the bed, essentially causing flame combustion. The NO concentration was low in the bed with both fuels and especially low with PSA off-gas as fuel. No more than 11 ppm was detected at any height in the reactor, with any of the bed materials, in the bed temperature range of 700–750 °C.


2016 ◽  
Vol 840 ◽  
pp. 112-117
Author(s):  
Hamdan Yahya ◽  
Mohd Roslee Othman ◽  
Zainal Arifin Ahmad

Commercially made kaolin is identified as one of the important materials for production of aluminosilicate for catalyst bed support. In this work, an attempt is made to study the potential of local clay for production of aluminosilicate. Three area were identified as kaolin sources in Perak state as they are Trong, Simpang Pulai and Bidor, and labelled as TC, SP and BC, respectively. For preparation of aluminosilicate, formulation using 30% clay and the rest used feldspar (40%) and silica sand (30%). Each batch were formed into ball shapes’ before fired at 1250°C at controlled firing rate of 3°C/min. From the investigation, it is found that only two local clays (CBTC and CBSP) highly potential to be used to produce ceramic ball for catalyst support. In addition, the crushing strength is 100% better than the commercial made product which also have less than 1% water absorption.


Sign in / Sign up

Export Citation Format

Share Document