A multigene phylogeny demonstrates that Tuber aestivum and Tuber uncinatum are conspecific

2013 ◽  
Vol 13 (4) ◽  
pp. 503-512 ◽  
Author(s):  
Virginie Molinier ◽  
Diederik van Tuinen ◽  
Gérard Chevalier ◽  
Armelle Gollotte ◽  
Daniel Wipf ◽  
...  
2021 ◽  
Vol 20 (7) ◽  
pp. 889-904
Author(s):  
M. Prieto ◽  
Javier Etayo ◽  
I. Olariaga

AbstractThe class Eurotiomycetes (Ascomycota, Pezizomycotina) comprises important fungi used for medical, agricultural, industrial and scientific purposes. Eurotiomycetes is a morphologically and ecologically diverse monophyletic group. Within the Eurotiomycetes, different ascoma morphologies are found including cleistothecia and perithecia but also apothecia or stromatic forms. Mazaediate representatives (with a distinct structure in which loose masses of ascospores accumulate to be passively disseminated) have evolved independently several times. Here we describe a new mazaediate species belonging to the Eurotiomycetes. The multigene phylogeny produced (7 gene regions: nuLSU, nuSSU, 5.8S nuITS, mtSSU, RPB1, RPB2 and MCM7) placed the new species in a lineage sister to Eurotiomycetidae. Based on the evolutionary relationships and morphology, a new subclass, a new order, family and genus are described to place the new species: Cryptocalicium blascoi. This calicioid species occurs on the inner side of loose bark strips of Cupressaceae (Cupressus, Juniperus). Morphologically, C. blascoi is characterized by having minute apothecioid stalked ascomata producing mazaedia, clavate bitunicate asci with hemiamyloid reaction, presence of hamathecium and an apothecial external surface with dark violet granules that becomes turquoise green in KOH. The ancestral state reconstruction analyses support a common ancestor with open ascomata for all deep nodes in Eurotiomycetes and the evolution of closed ascomata (cleistothecioid in Eurotiomycetidae and perithecioid in Chaetothyriomycetidae) from apothecioid ancestors. The appropriateness of the description of a new subclass for this fungus is also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tina Unuk Nahberger ◽  
Gian Maria Niccolò Benucci ◽  
Hojka Kraigher ◽  
Tine Grebenc

AbstractSpecies of the genus Tuber have gained a lot of attention in recent decades due to their aromatic hypogenous fruitbodies, which can bring high prices on the market. The tendency in truffle production is to infect oak, hazel, beech, etc. in greenhouse conditions. We aimed to show whether silver fir (Abies alba Mill.) can be an appropriate host partner for commercial mycorrhization with truffles, and how earthworms in the inoculation substrate would affect the mycorrhization dynamics. Silver fir seedlings inoculated with Tuber. aestivum were analyzed for root system parameters and mycorrhization, how earthworms affect the bare root system, and if mycorrhization parameters change when earthworms are added to the inoculation substrate. Seedlings were analyzed 6 and 12 months after spore inoculation. Mycorrhization with or without earthworms revealed contrasting effects on fine root biomass and morphology of silver fir seedlings. Only a few of the assessed fine root parameters showed statistically significant response, namely higher fine root biomass and fine root tip density in inoculated seedlings without earthworms 6 months after inoculation, lower fine root tip density when earthworms were added, the specific root tip density increased in inoculated seedlings without earthworms 12 months after inoculation, and general negative effect of earthworm on branching density. Silver fir was confirmed as a suitable host partner for commercial mycorrhization with truffles, with 6% and 35% mycorrhization 6 months after inoculation and between 36% and 55% mycorrhization 12 months after inoculation. The effect of earthworms on mycorrhization of silver fir with Tuber aestivum was positive only after 6 months of mycorrhization, while this effect disappeared and turned insignificantly negative after 12 months due to the secondary effect of grazing on ectomycorrhizal root tips.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
P. W. Thomas

AbstractVery little is known about the impact of flooding and ground saturation on ectomycorrhizal fungi (EcM) and increasing flood events are expected with predicted climate change. To explore this, seedlings inoculated with the EcM species Tuber aestivum were exposed to a range of flood durations. Oak seedlings inoculated with T. aestivum were submerged for between 7 and 65 days. After a minimum of 114-day recovery, seedling growth measurements were recorded, and root systems were destructively sampled to measure the number of existing mycorrhizae in different zones. Number of mycorrhizae did not display correlation with seedling growth measurements. Seven days of submersion resulted in a significant reduction in mycorrhizae numbers and numbers reduced most drastically in the upper zones. Increases in duration of submersion further impacted mycorrhizae numbers in the lowest soil zone only. T. aestivum mycorrhizae can survive flood durations of at least 65 days. After flooding, mycorrhizae occur in higher numbers in the lowest soil zone, suggesting a mix of resilience and recovery. The results will aid in furthering our understanding of EcM but also may aid in conservation initiatives as well as providing insight for those whose livelihoods revolve around the collection of EcM fruiting bodies or cropping of the plant partners.


Phytotaxa ◽  
2015 ◽  
Vol 205 (2) ◽  
pp. 90 ◽  
Author(s):  
XIN-LEI FAN ◽  
KEVIN D. HYDE ◽  
JIAN-KUI LIU ◽  
YING-MEI LIANG ◽  
CHENG-MING TIAN

The family Botryosphaeriaceae encompasses important plant-associated pathogens, endophytes and saprobes with a wide geographical and host distribution. Two dark-spored botryosphaeriaceous taxa associated with Rhus typhina dieback and canker disease were collected from Ningxia Province, in northwestern China. Morphology and multigene analysis (ITS, LSU and EF-1α) clearly distinguished this clade as a distinct species in the genus. Phaeobotryon rhois is introduced and illustrated as a new species in this paper. The species is characterized by its globose, unilocular fruiting bodies and small, brown, 1-septate conidia. It can be distinguished from the similar species P. cercidis, P. cupressi, P. mamane and P. quercicola based on host association and conidial size and colour.


2021 ◽  
Author(s):  
Gilberto Bragato ◽  
Davide Mosetti ◽  
Philippe Turpaud ◽  
Gian Maria Niccolò Benucci ◽  
Domizia Donnini

2004 ◽  
Vol 108 (8) ◽  
pp. 864-872 ◽  
Author(s):  
Lisa A. Castlebury ◽  
Amy Y. Rossman ◽  
Gi-Ho Sung ◽  
Aimee S. Hyten ◽  
Joseph W. Spatafora

Sign in / Sign up

Export Citation Format

Share Document