Variations and Statistical Probability Characteristic Analysis of Extreme Precipitation in the Hekouzhen-Longmen Region of the Yellow River, China

2019 ◽  
Vol 55 (4) ◽  
pp. 641-655
Author(s):  
Suzhen Dang ◽  
Manfei Yao ◽  
Xiaoyan Liu ◽  
Guotao Dong
2018 ◽  
Vol 136 (3-4) ◽  
pp. 1387-1396 ◽  
Author(s):  
Yang Zhao ◽  
Xiangde Xu ◽  
Wubin Huang ◽  
Yuhong Wang ◽  
Yanling Xu ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Suzhen Dang ◽  
Xiaoyan Liu ◽  
Huijuan Yin ◽  
Xinwei Guo

The Yellow River is one of the rivers with the largest amount of sediment in the world. The amount of incoming sediment has an important impact on water resources management, sediment regulation schemes, and the construction of water conservancy projects. The Loess Plateau is the main source of sediment in the Yellow River Basin. Floods caused by extreme precipitation are the primary driving forces of soil erosion in the Loess Plateau. In this study, we constructed the extreme precipitation scenarios based on historical extreme precipitation records in the main sediment-yielding area in the middle reaches of the Yellow River. The amount of sediment yield under current land surface conditions was estimated according to the relationship between extreme precipitation and sediment yield observations in the historical period. The results showed that the extreme rainfall scenario of the study area reaches to 159.9 mm, corresponding to a recurrence period of 460 years. The corresponding annual sediment yield under the current land surface condition was range from 0.821 billion tons to 1.899 billion tons, and the median annual sediment yield is 1.355 billion tons, of which more than 91.9% of sediment yields come from the Hekouzhen to Longmen sectionand the Jinghe River basin. Therefore, even though the vegetation of the Loess Plateau has been greatly improved, and a large number of terraces and check dams have been built, the flood control and key project operation of the Yellow River still need to be prepared to deal with the large amount of sediment transport.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Peng Jiang ◽  
Zhongbo Yu ◽  
Feifei Yuan ◽  
Kumud Acharya

Changes in extreme precipitation are critical to assess the potential impacts of climate change on human and natural systems. This paper provides a comprehensive investigation on the multi-scale temporal variability of extreme precipitation in the Source Region of the Yellow River (SRYR). The statistical analysis explores multi-scale extreme precipitation variability ranging from short to long term, including seasonal, annual, and inter-annual variations at different locations in the SRYR. The results suggest that seasonal patterns of extreme precipitation do not always follow the seasonal pattern of total precipitation. Heavy precipitation mostly happens during the period from May and October with July as the peak, while dry conditions are mostly seen in winter seasons. However, there are no significant annual trends for most indices at most locations. The extreme heavy precipitation presents an increasing trend at high elevation and decreasing trend at low elevation. The extreme dry condition presents more consistently decreasing trends at nearly all locations. Long-term analyses indicate that most of the selected indices except average daily intensity display multi-year bands ranging from 2 to 8 years which is probably due to the effects of El Niño–Southern Oscillation (ENSO). A further evaluation on how the ENSO events would impact extreme precipitation shows that eastern Pacific warming (EPW) and central Pacific warming (CPW) would bring less extreme heavy precipitation compared to normal years. These results can provide a beneficial reference to understand the temporal variability of extreme precipitation in the SRYR.


2014 ◽  
Vol 955-959 ◽  
pp. 3269-3273
Author(s):  
Xin Ling Cai ◽  
Qian Li ◽  
Lin Hu ◽  
Xiao Meng Zhao

Based on the daily rainfall data of 145 meteorological stations in the Yellow River basin, the spatial and temporal variations characteristic of erosive rainfall was analyzed by using statistical methods. The results show that the trend of the erosion precipitation, extreme precipitation and annual precipitation is significantly reduced. The erosion precipitation, extreme precipitation and annual precipitation are decrease from southeast to northwest. The long-term trends of different intensities rainfall is non-uniformity in space nearly 50 years. The erosion precipitation and annual precipitation are increasing in most areas of the upper reaches of the Yellow River basin, and are decreasing in the others areas, especially decreasing significantly in the water and soil loss of serious erosion in the Loess Plateau.


2018 ◽  
Vol 14 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Yang LI ◽  
◽  
Zhixiang XIE ◽  
Fen QIN ◽  
Yaochen QIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document