scholarly journals Numerical computation of blood flow for a patient-specific hemodialysis shunt model

Author(s):  
Surabhi Rathore ◽  
Tomoki Uda ◽  
Viet Q. H. Huynh ◽  
Hiroshi Suito ◽  
Toshitaka Watanabe ◽  
...  

AbstractHemodialysis procedure is usually advisable for end-stage renal disease patients. This study is aimed at computational investigation of hemodynamical characteristics in three-dimensional arteriovenous shunt for hemodialysis, for which computed tomography scanning and phase-contrast magnetic resonance imaging are used. Several hemodynamical characteristics are presented and discussed depending on the patient-specific morphology and flow conditions including regurgitating flow from the distal artery caused by the construction of the arteriovenous shunt. A simple backflow prevention technique at an outflow boundary is presented, with stabilized finite element approaches for incompressible Navier–Stokes equations.

2004 ◽  
Vol 71 (1) ◽  
pp. 89-95 ◽  
Author(s):  
S. Mittal

Flow past a spinning circular cylinder placed in a uniform stream is investigated via three-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and freestream speed of the flow is 200. The nondimensional rotation rate, α, (ratio of the surface speed and freestream speed) is 5. It is found that although the two-dimensional flow for α=5 is stable, centrifugal instabilities exist along the entire span in a three-dimensional set-up. In addition, a “no-slip” side-wall can result in separation of flow near the cylinder ends. Both these effects lead to a loss in lift and increase in drag. The end conditions and aspect ratio of the cylinder play an important role in the flow past a spinning cylinder. It is shown that the Prandtl’s limit on the maximum lift generated by a spinning cylinder in a uniform flow does not hold.


2015 ◽  
Vol 766 ◽  
pp. 28-53 ◽  
Author(s):  
  Navrose ◽  
Jagmohan Meena ◽  
Sanjay Mittal

AbstractThree-dimensional computations are carried out for a spinning cylinder placed in a uniform flow. The non-dimensional rotation rate is varied in the range $0.0\leqslant {\it\alpha}\leqslant 5.0$. A stabilized finite element method is utilized to solve the incompressible Navier–Stokes equations in primitive variables formulation. Linear stability analysis of the steady state shows the existence of several new unstable three-dimensional modes for $200\leqslant \mathit{Re}\leqslant 350$ and $4.0\leqslant {\it\alpha}\leqslant 5.0$. The curves of neutral stability of these modes are presented in the $\mathit{Re}{-}{\it\alpha}$ parameter space. For the flow at $\mathit{Re}=200$ and rotation rate in the ranges $0.0\leqslant {\it\alpha}\leqslant 1.91$ and $4.34\leqslant {\it\alpha}\leqslant 4.7$, the vortex shedding, earlier reported in two dimensions and commonly referred to as parallel shedding, can also exist as oblique shedding. In this mode of shedding, the vortices are inclined to the axis of the cylinder. In fact, parallel shedding is a special case of oblique shedding. It is found that the span of the cylinder plays a significant role in the time evolution of the flow. Of all the unstable eigenmodes, with varied spanwise wavenumber, only the ones whose integral number of wavelengths fit the span length of the cylinder are selected to grow. For the flow at $\mathit{Re}=200$, two steady states exist for $4.8\leqslant {\it\alpha}\leqslant 5.0$. While one of them is associated with unstable eigenmodes, the other is stable to all infinitesimal perturbations. In this regime, irrespective of the initial conditions, the fully developed flow is steady and devoid of any instabilities.


Author(s):  
F. Gori ◽  
A. Boghi

Literature presents numerical simulations on image-based geometry where blood is treated as a Newtonian fluid, while others simulations assumed a non-Newtonian blood with two or three-dimensional axisymmetric geometry. The present work investigates the non-Newtonian behavior of a pulsating blood flow through a stenosed carotid artery, realistically reconstructed with the patient-specific geometry of a 60 years old man with an intimal thickening of 90% degree of stenosis. Lumen boundary contours are segmented using commercial image-processing software AMIRA for a 3D geometry reconstruction. High-quality tetrahedral mesh is generated using commercial mesh-generator code GAMBIT. The 3-D unsteady incompressible Navier-Stokes equations are solved using the commercial finite volume code FLUENT. The boundary condition is assumed from a flow-rate-wave of the literature using the FFT method and imposing a pressure sinusoidal signal with 20 harmonics.


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Žarko Milošević ◽  
Dalibor Nikolić ◽  
Igor Saveljić ◽  
Velibor Isailović ◽  
Thanos Bibas ◽  
...  

Benign paroxysmal positional vertigo (BPPV) is the most common type of vertigo. The symptoms of BPPV typically appear after angular movements of the head. BPPV leads to dizziness, nausea and imbalance. In this study, we examined a model of the semi-circular canal (SCC) with fully 3D three dimensional anatomical data from specific patient. A full Navier-Stokes equations and continuity equations are used for fluid domain with Arbitrary-Lagrangian Eulerian (ALE) formulation for mesh motion of finite element. Fluid-structure interaction for fluid coupling with cupula deformation is used. Particle tracking algorithm is implemented for particle motion. Motion of the otoconia particles which is main cause for BPPV is simulated. Velocity distribution, shear stress and force from endolymph side are presented for patient specific three SCC. We compared our numerical models with experiments with head moving and nystagmus eye tracking. Numerical simulation can give more details and understanding of the pathology of the specific patient in standard clinical diagnostic and therapy procedure for BPPV.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document