Microbial biomass and activity down the soil profile after long-term addition of farmyard manure to a sandy soil

2016 ◽  
Vol 8 (1) ◽  
pp. 29-38 ◽  
Author(s):  
André Sradnick ◽  
Meike Oltmanns ◽  
Joachim Raupp ◽  
Rainer Georg Joergensen
Geoderma ◽  
2014 ◽  
Vol 226-227 ◽  
pp. 79-84 ◽  
Author(s):  
André Sradnick ◽  
Meike Oltmanns ◽  
Joachim Raupp ◽  
Rainer Georg Joergensen

Soil Research ◽  
2008 ◽  
Vol 46 (2) ◽  
pp. 141 ◽  
Author(s):  
Joginder Kaur ◽  
O. P. Choudhary ◽  
Bijay-Singh

Long-term sodic-water irrigation may adversely affect the quality of soil organic carbon along with some soil properties. The extent to which the adverse effects can be ameliorated through the use of gypsum and amendments needs to be known. Soil properties and microbial biomass carbon (MBC) were studied after 14 years of sodic water (SW) irrigation and application of different levels of gypsum, farmyard manure (FYM), green manure (GM), and wheat straw (WS) to a sandy loam soil. Irrigation with SW increased pH, electrical conductivity, sodium adsorption ratio, exchangeable sodium percentage (ESP), and bulk density, and decreased final infiltration rate of soil. Application of gypsum and organic amendments reversed these trends. Decrease in MBC due to SW irrigation was from 132.5 to 44.6 mg/kg soil in the 0–75 mm soil layer and from 49.0 to 17.3 mg/kg soil in the 75–150 mm soil layer. Application of gypsum and organic amendments significantly increased MBC; GM and FYM were more effective than WS. Changes in soil ESP explained 85 and 75% variation in MBC in the unamended and organically amended SW treatments, respectively. Soil pH as additional variable improved the predictability of MBC to 96% and 77%. Irrigation with SW reduced yield of rice plus wheat by 5 t/ha. Application of gypsum and organic amendments significantly increased the rice and wheat yield; it was significantly correlated with MBC (r = 0.56**, n = 60). It confirms that MBC rather than organic C is a more sensitive indicator of environmental stresses in soils caused by long-term sodic water irrigation.


2020 ◽  
Author(s):  
Ilka Schmoock ◽  
Deborah Linsler ◽  
Mignon Sandor ◽  
Rainer Georg Joergensen ◽  
Martin Potthoff

<p>Over the last decades, reduced tillage became more and more important as a suitable soil management practice. Moreover, reduced tillage is expected to promote a healthy and active soil life as a feature of sustainable agricultural. The determination of soil microbial biomass and microbial indices are suitable indicators for estimating soil quality. This study follows a regional approach and focusses at four different countries with varying environmental conditions at long-term experimental field-sites (LTE´s) across Europe. Soil microbial biomass carbon (SMB-C), the metabolic quotient (<em>q</em>CO<sub>2</sub>) and the ratio of SMB-C to soil organic carbon (SOC) were measured as microbial properties.</p><p>Our contribution to the ongoing discussion of the effectiveness of non-conventional tillage systems is (i) the comparison between conventional ploughing (CT) and minimum tillage (MT), (ii) the comparison of inversion vs. not inversion tillage at the same working depth, (iii) the comparison of ploughing vs. no-tillage (NT), (iv) the comparison between reduced tillage systems with each other (MT vs. NT).</p><p>We found a significant difference of SMB-C for CT and MT between 0 and 10 cm in Germany and Sweden, but no difference between tillage treatments for the sampled soil profile (0-30 cm). We highlight that tillage changed the vertical distribution of SMB-C, showing similar values among soil depths under CT and a depth gradient with decreasing values for MT.</p><p>The comparison of inversion vs. not inversion tillage at the same working depth in Romania showed no differences between CT and MT at all. This suggests that humus-rich soils seem to be more resistant to tillage-related disturbances. The working depth might have a greater impact for both, inversion and non-inversion tillage than the type of the tillage system itself.</p><p>For the comparison of CT and NT, we used the field-sites in Spain and Sweden. In Spain, NT was clearly of advantage for microbial biomass and activity, compared to CT. This was true for the whole sampled soil profile (0-30 cm) whereas in Sweden differences could only be detected between SMB-C levels in two soil depths. Our results indicate that the effect of tillage seems to be smaller in cold-temperate areas.</p><p>Comparing MT and NT in Sweden, we found no difference in SMB-C between these two forms of conservation tillage, neither in the first centimeters, nor in the whole sampled profile. Consequently, minimum tillage seems to be an alternative in cold and moist regions if no-tillage is not possible to apply without reducing soil quality or crop yields.</p><p>We conclude that even if minimum and no-tillage are generally beneficial for microorganisms, there is a big variance between the different forms of reduced tillage systems. Thus, statements cannot be made across different soils and machine types, but have to be made on a regional scale.</p><p> </p>


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2190
Author(s):  
Ranjan Laik ◽  
B. H. Kumara ◽  
Biswajit Pramanick ◽  
Santosh Kumar Singh ◽  
Nidhi ◽  
...  

Labile soil organic matter pools (LSOMp) are believed to be the most sensitive indicator of soil quality when it is changed rapidly with varied management practices. In sub-tropical climates, the turnover period of labile pools is quicker than in temperate climates. Organic amendments are of importance in improve the LSOMp for a temperate climate and may be helpful in sub-tropical climates as well. Hence, the status of LSOMp was studied in long term farmyard manure (FYM) amended soils under wheat (Triticum aestivum L.) and pearl millet (Pennisetum glaucum L.) cropping systems in sub-tropical arid conditions. At the same time, we also attempt to determine the impact of mineral nitrogen (N) application in these pools. In this study, dissolved organic matter (DOM), microbial biomass (MB), and light fraction (LF) were isolated in the management practices involving different modes and rates of FYM applications along with the application of nitrogenous fertilizer. C and N contents of the labile pools were analyzed in the soil samples at different periods after FYM applications. Among the different pools, microbial biomass carbon (MBC) and dissolved organic carbon (DOC) were changed significantly with different rates and modes of FYM application and mineral N application. Application of FYM at 15 Mg ha−1 in both the seasons + 120 kg ha−1 mineral N resulted in significantly higher MBC and DOC as compared to all of the other treatments. This treatment also resulted in 13.75% and 5.8% more MBC and DOC, respectively, as compared to the amount of MBC and DOC content in the control plot where FYM and mineral N were not applied. Comparing the labile organic matter pools of 45 years of FYM amendment with initial values, it was found that the dissolved organic carbon, microbial biomass carbon, and light fraction carbon were increased up to the maximum extent of about 600, 1200, and 700 times, respectively. The maximum amount of DOM (562 mg kg−1 of DOC and 70.1 mg kg−1 of DON), MB (999 mg kg−1 of MBC and 158.4 mg kg−1 of MBN), LF (2.61 g kg−1 of LFC and 154.6 g kg−1 of LFN) were found in case of both season applied FYM as compared to either summer or winter applied FYM. Concerning the different rates of FYM application, 15 Mg ha−1 FYM also resulted in a significantly higher amount of DOM, MB, and LF as compared to other FYM rates (i.e., 5 Mg ha−1 and 10 Mg ha−1). Amongst different pools, MB was found to be the most sensitive to management practices in this study. From this study, it was found that the long-term FYM amendment in sub-tropical soil along with mineral N application can improve the LSOMp of the soil. Thus, it can be recommended that the application of FYM at 15 Mg ha−1 in summer and winter with +120 kg ha−1 mineral N can improve SOC and its labile pools in subtropical arid soils. Future studies on LSOMp can be carried out by considering different cropping systems of subtropical climate.


2007 ◽  
Vol 36 (1) ◽  
pp. 305-315 ◽  
Author(s):  
G. F. Koopmans ◽  
W. J. Chardon ◽  
R. W. McDowell

2019 ◽  
Vol 17 (1) ◽  
pp. 31-37
Author(s):  
Vladimir Šimanský ◽  
Jerzy Jonczak

Abstract We investigated the role of Mn oxides on the soil structure (contents of dry and water-stable aggregates) of sandy soil under a controlled long-term fertilisation experiment. We examined two experiments: a 94-year-term experiment with: no fertilisers, NPK fertilisers, and CaNPK fertilisers; and a 25-year-term experiment that included: farmyard manure and no mineral fertilisation, farmyard manure + NPK fertilisers, and farmyard manure + CaNPK fertilisers. The results showed that in the 94-year-term trial, Mn oxides were increased in CaNPK treatment. In the 25-year-term experiment, the farmyard manure combined with NPK decreased total Mn and its oxides. In the 94-year-term experiment, the content of dry-sieved macro-aggregates (DSAma) and water-stable macro-aggregates increased due to fertilisation. The result of our study suggests that Mn oxides had positive effects mainly on higher size classes of DSAma and did not have any effect on water-stable aggregate contents.


2019 ◽  
Vol 56 (3) ◽  
pp. 305-311
Author(s):  
Debasis Purohit ◽  
Mitali Mandal ◽  
Avisek Dash ◽  
Kumbha Karna Rout ◽  
Narayan Panda ◽  
...  

An effective approach for improving nutrient use efficiency and crop productivity simultaneously through exploitation of biological potential for efficient acquisition and utilization of nutrients by crops is very much needed in this current era. Thus, an attempt is made here to investigate the impact of long term fertilization in the soil ecology in rice-rice cropping system in post kharif - 2015 in flooded tropical rice (Oryza sativa L.) in an acidic sandy soil. The experiment was laid out in a randomized block design with quadruplicated treatments. Soil samples at different growth stages of rice were collected from long term fertilizer experiment.The studied long-term manured treatments included 100 % N, 100% NP, 100 % NPK, 150 % NPK and 100 % NPK+FYM (5 t ha-1) and an unmanured control. Soil fertility status like SOC content and other available nutrient content has decreased continuously towards the crop growth period. Comparing the results of different treatments, it was found that the application of 100% NPK + FYM exhibited highest nutrient content in soils. With regards to microbial properties it was also observed that the amount of microbial biomass carbon (MBC) and microbial biomass nitrogen ( MBN) showed highest accumulation in 100 % NPK + FYM at maximum tillering stage of the rice. The results further reveal that dehydrogenase activity was maximum at panicle initiation stage and thereafter it decreases. Soil organic carbon content, MBC, MBN and dehydrogenase activity were significantly correlated with each other. Significant correlations were observed between rice yield and MBC at maturity stage( R2 = 0.94**) and panicle initiation stage( R2 = 0.92**) and available nitrogen content at maturity stage( R2 = 0.91**).


2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.


Sign in / Sign up

Export Citation Format

Share Document