scholarly journals Addition of seaweed powder and sulphated polysaccharide on shelf_life extension of functional fish surimi restructured product

2019 ◽  
Vol 56 (8) ◽  
pp. 3777-3789 ◽  
Author(s):  
Hakimeh Jannat-Alipour ◽  
Masoud Rezaei ◽  
Bahareh Shabanpour ◽  
Mehdi Tabarsa ◽  
Fereidoon Rafipour
2010 ◽  
Vol 53 (4) ◽  
pp. 987-995 ◽  
Author(s):  
Alex Augusto Gonçalves ◽  
Marcelo Gonzalez Passos

This study aimed at determining the influence of three concentrations of commercial transglutaminase enzyme in restructured fillet of minced fish from white croacker (Micropogonias furnieri), one of the four marine species with notability in Brazil. The restructured fillet developed had advantages when compared to traditional fillet, such as absence of spine and less flavour intensity (washes cycles). Washing process for white croacker mince was compared with five clarification agents: water (control), phosphoric acid (H3PO4), sodium chloride (NaCl), calcium carbonate (CaCO3) and sodium bicarbonate (NaHCO3). The higher quality product (whiteness) was obtained with calcium carbonate washes. Three concentrations (1.5, 1.0 and 0.5%) of microbial transglutaminase MGTase (Active TG-B %v/v and Active TG-BP %w/w) were compared, in order to produce fish restructured product (boneless fillet). The concentration of 1.5% (both enzymes), produced better results. The restructured products were compared by sensory analysis and showed better sensory parameters (appearance, odour, flavour and texture) samples treated with Active TG-B (solution form).


Author(s):  
Rengasamy Ragupathi Raja Kannan ◽  
Radjassegarin Arumugam ◽  
Perumal Anantharaman

Contraception ◽  
1984 ◽  
Vol 29 (4) ◽  
pp. 375-383 ◽  
Author(s):  
S.G. Wood ◽  
M.E. Forrest ◽  
B.A. John ◽  
L.F. Chasseaud ◽  
J.A.C. van de Wiel

1989 ◽  
Vol 261 (3) ◽  
pp. 999-1007 ◽  
Author(s):  
K Lidholt ◽  
L Kjellén ◽  
U Lindahl

Incubation of a mouse mastocytoma microsomal fraction with UDP-[3H]GlcA and UDP-GlcNAc yielded proteoglycans containing non-sulphated polysaccharide chains. Similar incubations performed in the presence of sulphate donor 3′-phosphoadenosine 5′-phosphosulphate (PAPS) produced both sulphated and non-sulphated proteoglycans, which were separated by chromatography on DEAE-cellulose Analysis by gel chromatography of single polysaccharide chains, released from the proteoglycans by alkali treatment, showed that the non-sulphated chains produced during incubation for 5 min or 25 min, either in the absence or in the presence of PAPS, were of fairly small molecular size, with an average peak Mr of approx. 10 x 10(3)-15 x 10(3). In contrast, the sulphated chains exceeded Mr 100 x 10(3) Pulse-chase experiments suggested that sulphated chains were capable of further elongation. These results indicate that sulphation promotes, by so far unknown mechanisms, further chain elongation. Sulphated proteoglycan (retarded on DEAE-cellulose chromatography) isolated after similar incubation of the microsomal fraction for 1 min only was found to contain a mixture of sulphated and virtually non-sulphated polysaccharide chains. However, when [35S]PAPS was included in the incubations, some 35S was found to be associated, essentially as N-sulphate groups, also with the latter type of chains, preferentially the high-Mr fraction. These results are interpreted in terms of a biosynthetic model by which the heparin proteoglycan is generated through transient interactions of macromolecular intermediates with distinctly separate complexes of membranebound enzymes.


2014 ◽  
Vol 99 (4) ◽  
pp. 326-334
Author(s):  
Kaire Torn ◽  
Mary J. Beilby ◽  
Michelle T. Casanova ◽  
Sabah Al Khazaaly

1991 ◽  
Vol 275 (1) ◽  
pp. 151-158 ◽  
Author(s):  
M Kusche ◽  
H H Hannesson ◽  
U Lindahl

A capsular polysaccharide from Escherichia coli K5 was previously found to have the same structure, [-(4)beta GlcA(1)→(4)alpha GlcNAc(1)-]n, as that of the non-sulphated precursor polysaccharide in heparin biosynthesis [Vann, Schmidt, Jann & Jann (1981) Eur. J. Biochem. 116, 359-364]. The K5 polysaccharide was N-deacetylated (by hydrazinolysis) and N-sulphated, and was then incubated with detergent-solubilized enzymes from a heparin-producing mouse mastocytoma, in the presence of adenosine 3′-phosphate 5′-phospho[35S] sulphate ([35S]PAPS). Structural analysis of the resulting 35S-labelled polysaccharide revealed the formation of all the major disaccharide units found in heparin. The identification of 2-O-[35S]sulphated IdoA (L-iduronic acid) as well as 6-O-[35S]sulphated GlcNSO3 units demonstrated that the modified K5 polysaccharide served as a substrate in the hexuronosyl C-5-epimerase and the major O-sulphotransferase reactions involved in the biosynthesis of heparin. The GlcA units of the native (N-acetylated) E. coli polysaccharide were attacked by the epimerase only when PAPS was present in the incubations, whereas those of the chemically N-sulphated polysaccharide were epimerized also in the absence of PAPS, in accord with the notion that N-sulphate groups are required for epimerization. With increasing concentrations of PAPS, the mono-O-sulphated disaccharide unit-IdoA(2-OSO3)-GlcNSO3- was progressively converted into the di-O-sulphated species -IdoA(2-OSO3)-GlcNSO3(6-OSO3)-. A small proportion of the 35S-labelled polysaccharide was found to bind with high affinity to the proteinase inhibitor antithrombin. This proportion increased with increasing concentration of PAPS up to a level corresponding to approximately 1-2% of the total incorporated 35S. The solubilized enzymes thus catalysed all the reactions required for the generation of functional antithrombin-binding sites.


Sign in / Sign up

Export Citation Format

Share Document