scholarly journals Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions

1991 ◽  
Vol 275 (1) ◽  
pp. 151-158 ◽  
Author(s):  
M Kusche ◽  
H H Hannesson ◽  
U Lindahl

A capsular polysaccharide from Escherichia coli K5 was previously found to have the same structure, [-(4)beta GlcA(1)→(4)alpha GlcNAc(1)-]n, as that of the non-sulphated precursor polysaccharide in heparin biosynthesis [Vann, Schmidt, Jann & Jann (1981) Eur. J. Biochem. 116, 359-364]. The K5 polysaccharide was N-deacetylated (by hydrazinolysis) and N-sulphated, and was then incubated with detergent-solubilized enzymes from a heparin-producing mouse mastocytoma, in the presence of adenosine 3′-phosphate 5′-phospho[35S] sulphate ([35S]PAPS). Structural analysis of the resulting 35S-labelled polysaccharide revealed the formation of all the major disaccharide units found in heparin. The identification of 2-O-[35S]sulphated IdoA (L-iduronic acid) as well as 6-O-[35S]sulphated GlcNSO3 units demonstrated that the modified K5 polysaccharide served as a substrate in the hexuronosyl C-5-epimerase and the major O-sulphotransferase reactions involved in the biosynthesis of heparin. The GlcA units of the native (N-acetylated) E. coli polysaccharide were attacked by the epimerase only when PAPS was present in the incubations, whereas those of the chemically N-sulphated polysaccharide were epimerized also in the absence of PAPS, in accord with the notion that N-sulphate groups are required for epimerization. With increasing concentrations of PAPS, the mono-O-sulphated disaccharide unit-IdoA(2-OSO3)-GlcNSO3- was progressively converted into the di-O-sulphated species -IdoA(2-OSO3)-GlcNSO3(6-OSO3)-. A small proportion of the 35S-labelled polysaccharide was found to bind with high affinity to the proteinase inhibitor antithrombin. This proportion increased with increasing concentration of PAPS up to a level corresponding to approximately 1-2% of the total incorporated 35S. The solubilized enzymes thus catalysed all the reactions required for the generation of functional antithrombin-binding sites.

1995 ◽  
Vol 309 (2) ◽  
pp. 465-472 ◽  
Author(s):  
N Razi ◽  
E Feyzi ◽  
I Björk ◽  
A Naggi ◽  
B Casu ◽  
...  

Capsular polysaccharide from Escherichia coli K5, with the basic structure (GlcA beta 1-4GlcNAc alpha 1-4)n, was chemically modified through N-deacetylation, N-sulphation and O-sulphation [Casu, Grazioli, Razi, Guerrini, Naggi, Torri, Oreste, Tursi, Zoppetti and Lindahl (1994) Carbohydr. Res. 263, 271-284]. Depending on the reaction conditions, the products showed different proportions of components with high affinity for antithrombin (AT). A high-affinity subfraction, M(r) approx. 36,000, was shown by near-UV CD, UV-absorption difference spectroscopy and fluorescence to cause conformational changes in the AT molecule very similar to those induced by high-affinity heparin. Fluorescence titrations demonstrated about two AT-binding sites per polysaccharide chain, each with a Kd of approx. 200 nM. The anti-(Factor Xa) activity was 170 units/mg, similar to that of the IIId international heparin standard and markedly higher than activities of previously described heparin analogues. Another preparation, M(r) approx. 13,000, of higher overall O-sulphate content, exhibited a single binding site per chain, with Kd approx. 1 microM, and an anti-(Factor Xa) activity of 70 units/mg. Compositional analysis of polysaccharide fractions revealed a correlation between the contents of -GlcA-GlcNSO3(3,6-di-OSO3)- disaccharide units and affinity for AT; the 3-O-sulphated GlcN unit has previously been identified as a marker component of the AT-binding pentasaccharide sequence in heparin. The abundance of the implicated disaccharide unit approximately equalled that of AT-binding sites in the 36,000-M(r) polysaccharide fraction, and approached one per high-affinity oligosaccharide (predominantly 10-12 monosaccharide units) isolated after partial depolymerization of AT-binding polysaccharide. These findings suggest that the modified bacterial polysaccharide interacts with AT and promotes its anticoagulant action in a manner similar to that of heparin.


2005 ◽  
Vol 187 (20) ◽  
pp. 6928-6935 ◽  
Author(s):  
Valley Stewart ◽  
Peggy J. Bledsoe

ABSTRACT Periplasmic nitrate reductase (napFDAGHBC operon product) functions in anaerobic respiration. Transcription initiation from the Escherichia coli napF operon control region is activated by the Fnr protein in response to anaerobiosis and by the NarQ-NarP two-component regulatory system in response to nitrate or nitrite. The binding sites for the Fnr and phospho-NarP proteins are centered at positions −64.5 and −44.5, respectively, with respect to the major transcription initiation point. The E. coli napF operon is a rare example of a class I Fnr-activated transcriptional control region, in which the Fnr protein binding site is located upstream of position −60. To broaden our understanding of napF operon transcriptional control, we studied the Haemophilus influenzae Rd napF operon control region, expressed as a napF-lacZ operon fusion in the surrogate host E. coli. Mutational analysis demonstrated that expression required binding sites for the Fnr and phospho-NarP proteins centered at positions −81.5 and −42.5, respectively. Transcription from the E. coli napF operon control region is activated by phospho-NarP but antagonized by the orthologous protein, phospho-NarL. By contrast, expression from the H. influenzae napF-lacZ operon fusion in E. coli was stimulated equally well by nitrate in both narP and narL null mutants, indicating that phospho-NarL and -NarP are equally effective regulators of this promoter. Overall, the H. influenzae napF operon control region provides a relatively simple model for studying synergistic transcription by the Fnr and phospho-NarP proteins acting from class I and class II locations, respectively.


1999 ◽  
Vol 65 (8) ◽  
pp. 3304-3311 ◽  
Author(s):  
Anne Cosquer ◽  
Vianney Pichereau ◽  
Jean-Alain Pocard ◽  
Jacques Minet ◽  
Michel Cormier ◽  
...  

ABSTRACT We combined the use of low inoculation titers (300 ± 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E. coli cells expressing only the ProU high-affinity general osmoporter. In contrast, nanomolar levels of osmoprotectants were ineffective with a mutant strain (GM50) that expressed only the low-affinity ProP osmoporter. Transport studies showed that DMSA and DMSP, like GB, were taken up via both ProU and ProP. Moreover, ProU displayed higher affinities for the three osmoprotectants than ProP displayed, and ProP, like ProU, displayed much higher affinities for GB and DMSA than for DMSP. Interestingly, ProP did not operate at substrate concentrations of 200 nM or less, whereas ProU operated at concentrations ranging from 1 nM to millimolar levels. Consequently,proU + strains of E. coli, but not the proP + strain GM50, could also scavenge nanomolar levels of GB, DMSA, and DMSP from oligotrophic seawater. The physiological and ecological implications of these observations are discussed.


1973 ◽  
Vol 137 (4) ◽  
pp. 1009-1023 ◽  
Author(s):  
Nathaniel F. Pierce

Natural cholera toxoid appears to act as a competitive inhibitor of cholera enterotoxin and is thus a useful tool for studying the interaction of cholera enterotoxin with cell membranes. Cholera enterotoxin binds to gut mucosa more rapidly than does its natural toxoid. Once binding occurs, however, it appears to be prolonged for both materials. Formalinized cholera toxoid has no inhibitory effect upon cholera enterotoxin. Enterotoxic activity, ability to bind to gut mucosa, and antitoxigenicity appear to be independent properties of cholera enterotoxin. Natural cholera toxoid does not inhibit Escherichia coli enterotoxin, indicating that although the two enterotoxins activate the same mucosal secretory mechanism they occupy different binding sites in the mucosa. Ganglioside, which may be the mucosal receptor of cholera enterotoxin, is highly efficient in deactivating cholera enterotoxin. By contrast, ganglioside is relatively inefficient in deactivating heat-labile E. coli enterotoxin and is without effect upon the heat-stable component of E. coli enterotoxin. These findings suggest that ganglioside is not likely to be the mucosal receptor for E. coli enterotoxin. Differences in cellular binding of E. coli and cholera enterotoxins may explain, at least in part, the marked differences in the time of onset and duration of their effects upon gut secretion.


2003 ◽  
Vol 374 (3) ◽  
pp. 767-772 ◽  
Author(s):  
Elisabet ROMAN ◽  
Ian ROBERTS ◽  
Kerstin LIDHOLT ◽  
Marion KUSCHE-GULLBERG

The Escherichia coli K5 capsular polysaccharide (glycosaminoglycan) chains are composed of the repeated disaccharide structure: -GlcAβ1,4-GlcNAcα1,4-(where GlcA is glucuronic acid and GlcNAc is N-acetyl-d-glucosamine). The GlcA, present in most glycosaminoglycans, is donated from UDP-GlcA, which, in turn, is generated from UDP-glucose by the enzyme UDP-glucose dehydrogenase (UDPGDH). The formation of UDP-GlcA is critical for the biosynthesis of glycosaminoglycans. To investigate the role of UDPGDH in glycosaminoglycan biosynthesis, we used K5 polysaccharide biosynthesis as a model. E. coli was transformed with the complete gene cluster for K5 polysaccharide production. Additional transformation with an extra copy of UDPGDH resulted in an approx. 15-fold increase in the in vitro UDPGDH enzyme activity compared with the strain lacking extra UDPGDH. UDP-GlcA levels were increased 3-fold in overexpressing strains. However, metabolic labelling with [14C]glucose showed, unexpectedly, that overexpression of UDPGDH lead to decreased formation of K5 polysaccharide. No significant difference in the K5 polysaccharide chain length was observed between control and overexpressing strains, indicating that the decrease in K5-polysaccharide production most probably was due to synthesis of fewer chains. Our results suggest that K5-polysaccharide biosynthesis is strictly regulated such that increasing the amount of available UDP-GlcA results in diminished K5-polysaccharide production.


Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 1779-1788 ◽  
Author(s):  
Graham P. Stafford ◽  
Tomoo Ogi ◽  
Colin Hughes

The gene hierarchy directing biogenesis of peritrichous flagella on the surface of Escherichia coli and other enterobacteria is controlled by the heterotetrameric master transcriptional regulator FlhD2C2. To assess the extent to which FlhD2C2 directly activates promoters of a wider regulon, a computational screen of the E. coli genome was used to search for gene-proximal DNA sequences similar to the 42–44 bp inverted repeat FlhD2C2 binding consensus. This identified the binding sequences upstream of all eight flagella class II operons, and also putative novel FlhD2C2 binding sites in the promoter regions of 39 non-flagellar genes. Nine representative non-flagellar promoter regions were all bound in vitro by active reconstituted FlhD2C2 over the K D range 38–356 nM, and of the nine corresponding chromosomal promoter–lacZ fusions, those of the four genes b1904, b2446, wzz fepE and gltI showed up to 50-fold dependence on FlhD2C2 in vivo. In comparison, four representative flagella class II promoters bound FlhD2C2 in the K D range 12–43 nM and were upregulated in vivo 30- to 990-fold. The FlhD2C2-binding sites of the four regulated non-flagellar genes overlap by 1 or 2 bp the predicted −35 motif of the FlhD2C2-activated σ 70 promoters, as is the case with FlhD2C2-dependent class II flagellar promoters. The data indicate a wider FlhD2C2 regulon, in which non-flagellar genes are bound and activated directly, albeit less strongly, by the same mechanism as that regulating the flagella gene hierarchy.


2008 ◽  
Vol 53 (3) ◽  
pp. 1238-1241 ◽  
Author(s):  
Tetsufumi Koga ◽  
Chika Sugihara ◽  
Masayo Kakuta ◽  
Nobuhisa Masuda ◽  
Eiko Namba ◽  
...  

ABSTRACT Tomopenem (formerly CS-023), a novel 1β-methylcarbapenem, exhibited high affinity for penicillin-binding protein (PBP) 2 in Staphylococcus aureus, PBP 2 in Escherichia coli, and PBPs 2 and 3 in Pseudomonas aeruginosa, which are considered major lethal targets. Morphologically, tomopenem induced spherical forms in E. coli and short filamentation with bulges in P. aeruginosa, which correlated with the drug's PBP profiles. The potential of resistance of these bacteria to tomopenem was comparable to that to imipenem.


1999 ◽  
Vol 181 (2) ◽  
pp. 577-584 ◽  
Author(s):  
Wolfgang Ebel ◽  
Janine E. Trempy

ABSTRACT Capsule (cps) gene expression in Escherichia coli is controlled by a complex network of regulators. Transcription of the cps operon is controlled by at least two positive regulators, RcsA and RcsB. We show here that RcsA functions to activate its own expression, as seen by the 100-fold-increased expression of arcsA::lacZ transcriptional fusion in strains with high levels of RcsA protein, either due to a mutation inlon or due to overexpression of RcsA from a multicopy plasmid. Expression of the rcsA::lacZfusion is increased by but not dependent on the presence of RcsB. In addition, the effects of H-NS and RcsB on the expression ofrcsA are independent of each other. A sequence motif, conserved between the E. coli cps promoter and theErwinia amylovora ams promoter and previously shown to be the RcsA-RcsB binding site, was identified in the rcsApromoter region and shown to be required for high-level expression ofrcsA.


1999 ◽  
Vol 181 (23) ◽  
pp. 7256-7265 ◽  
Author(s):  
Birgitta Esberg ◽  
Hon-Chiu Eastwood Leung ◽  
Ho-Ching Tiffany Tsui ◽  
Glenn R. Björk ◽  
Malcolm E. Winkler

ABSTRACT The tRNA of the miaB2508::Tn10dCm mutant of Salmonella typhimurium is deficient in the methylthio group of the modified nucleosideN 6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A37). By sequencing, we found that the Tn10dCm of this strain had been inserted into thef474 (yleA) open reading frame, which is located close to the nag locus in both S. typhimurium and Escherichia coli. By complementation of the miaB2508::Tn10dCm mutation with a minimal subcloned f474 fragment, we showed thatf474 could be identified as the miaB gene, which is transcribed in the counterclockwise direction on the bacterial chromosome. Transcriptional studies revealed two promoters upstream ofmiaB in E. coli and S. typhimurium. A Rho-independent terminator was identified downstream of themiaB gene, at which the majority (96%) of themiaB transcripts terminate in E. coli, showing that the miaB gene is part of a monocistronic operon. A highly conserved motif with three cysteine residues was present in MiaB. This motif resembles iron-binding sites in other proteins. Only a weak similarity to an AdoMet-binding site was found, favoring the idea that the MiaB protein is involved in the thiolation step and not in the methylating reaction of ms2i(o)6A37 formation.


Sign in / Sign up

Export Citation Format

Share Document