scholarly journals Preliminary evaluation of a natural surfactant extracted from Myrtus communis plant for enhancing oil recovery from carbonate oil reservoirs

Author(s):  
Iman Nowrouzi ◽  
Amir H. Mohammadi ◽  
Abbas Khaksar Manshad

AbstractSurfactants are among the materials used to improve water properties for injection into oil reservoirs, and reduce injection phase and crude oil interfacial tension (IFT). Recently, the interest in the use of natural surfactants has increased and is constantly on the rise to solve some challenges of using chemical surfactants such as incompatibility with the environment and the high cost. In this study, we have used aqueous extract of powdered leaf of Myrtus communis as an available source of natural surfactant. The extracted surfactant was characterized by TGA, 1H NMR and FTIR techniques. The surfactant efficiency was demonstrated by performing some experiments including IFT and injection of chemical slug and surfactant into carbonate plugs. The surfactant adsorption on carbonate rock was also studied. It was observed that this natural surfactant can reduce IFT to 0.861 mN/m at surfactant critical micelle concentration (CMC) of 5000 ppm. This minimum IFT was further reduced at optimum salinity and alkali. Finally, an increase of 14.3% oil recovery by surfactant flooding and 16.4% oil recovery by ASP slug injection containing NaOH alkali and partially hydrolyzed polyacrylamide (PHPA) polymer with 0.5 PV volume from carbonate plugs was achieved.

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Lei Zhang ◽  
Cheng Jing ◽  
Jing Liu ◽  
Khan Nasir

Due to the limited temperature resistance, the deep conformance control technology of using the conventional hydrolyzed polyacrylamide (HPAM) gel failed to enhance oil recovery in high-temperature heterogeneous oil reservoirs. Therefore, it is necessary to develop a gelant with high temperature resistance to meet the demands of increasing oil production and decreasing water cut in high-temperature heterogeneous oil reservoirs. In this paper, a copolymer is first synthesized by the method of inverse emulsion polymerization using 2-acrylamide-2-tetradecyl ethyl sulfonic acid (AMC16S), acrylamide (AM), and acrylic acid (AA). The developed copolymer has a highly branching skeleton and can resist temperature up to 100 °C. And then, a gelant with high temperature resistance and good shear resistance can be formed by mixing a certain proportion of the developed copolymer and polyethyleneimine (PEI). After the controllable gelation, a copolymer gel is formed and the formed gel can maintain the stable performance for a long time in the high-temperature environment. Experimental results show that the developed gelant can be applied in the conformance control of high-temperature heterogeneous oil reservoir.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7468
Author(s):  
Xiaoqin Zhang ◽  
Bo Li ◽  
Feng Pan ◽  
Xin Su ◽  
Yujun Feng

Water-soluble polymers, mainly partially hydrolyzed polyacrylamide (HPAM), have been used in the enhanced oil recovery (EOR) process. However, the poor salt tolerance, weak thermal stability and unsatisfactory injectivity impede its use in low-permeability hostile oil reservoirs. Here, we examined the adaptivity of a thermoviscosifying polymer (TVP) in comparison with HPAM for chemical EOR under simulated conditions (45 °C, 4500 mg/L salinity containing 65 mg/L Ca2+ and Mg2+) of low-permeability oil reservoirs in Daqing Oilfield. The results show that the viscosity of the 0.1% TVP solution can reach 48 mPa·s, six times that of HPAM. After 90 days of thermal aging at 45 °C, the TVP solution had 71% viscosity retention, 18% higher than that of the HPAM solution. While both polymer solutions could smoothly propagate in porous media, with permeability of around 100 milliDarcy, TVP exhibited stronger mobility reduction and permeability reduction than HPAM. After 0.7 pore volume of 0.1% polymer solution was injected, TVP achieved an incremental oil recovery factor of 13.64% after water flooding, 3.54% higher than that of HPAM under identical conditions. All these results demonstrate that TVP has great potential to be used in low-permeability oil reservoirs for chemical EOR.


2011 ◽  
Vol 306-307 ◽  
pp. 654-657 ◽  
Author(s):  
Yu Wang ◽  
Zhi Yong Lu ◽  
Yu Gui Han ◽  
Yu Jun Feng ◽  
Chong Li Tang

Polymer flooding represents one of the most efficient processes to enhance oil recovery, but the poor thermostability and salt tolerance of the currently-used partially hydrolyzed polyacrylamide (HPAM) impeded its use in high-temperature and high-salinity oil reservoirs. “Smart” thermoviscosifying polymers (TVPs) may overcome the deficiencies of HPAM. Steady and dynamic rheological behaviors against temperature of a novel TVP were examined in this work in comparison with a commercial HPAM polymer. It was found when increasing temperature, both apparent viscosity and elastic modulus increase for TVP aqueous solution, but decrease for HPAM solution. The results indicate that TVP shows some potential to be used in enhancing oil recovery from high-temperature and high-salinity oil reservoirs.


2004 ◽  
Vol 126 (2) ◽  
pp. 119-124 ◽  
Author(s):  
O. S. Shokoya ◽  
S. A. (Raj) Mehta ◽  
R. G. Moore ◽  
B. B. Maini ◽  
M. Pooladi-Darvish ◽  
...  

Flue gas injection into light oil reservoirs could be a cost-effective gas displacement method for enhanced oil recovery, especially in low porosity and low permeability reservoirs. The flue gas could be generated in situ as obtained from the spontaneous ignition of oil when air is injected into a high temperature reservoir, or injected directly into the reservoir from some surface source. When operating at high pressures commonly found in deep light oil reservoirs, the flue gas may become miscible or near–miscible with the reservoir oil, thereby displacing it more efficiently than an immiscible gas flood. Some successful high pressure air injection (HPAI) projects have been reported in low permeability and low porosity light oil reservoirs. Spontaneous oil ignition was reported in some of these projects, at least from laboratory experiments; however, the mechanism by which the generated flue gas displaces the oil has not been discussed in clear terms in the literature. An experimental investigation was carried out to study the mechanism by which flue gases displace light oil at a reservoir temperature of 116°C and typical reservoir pressures ranging from 27.63 MPa to 46.06 MPa. The results showed that the flue gases displaced the oil in a forward contacting process resembling a combined vaporizing and condensing multi-contact gas drive mechanism. The flue gases also became near-miscible with the oil at elevated pressures, an indication that high pressure flue gas (or air) injection is a cost-effective process for enhanced recovery of light oils, compared to rich gas or water injection, with the potential of sequestering carbon dioxide, a greenhouse gas.


Soft Matter ◽  
2021 ◽  
Author(s):  
Massinissa Hamouna ◽  
Aline Delbos ◽  
Christine Dalmazonne ◽  
Annie Colin

In the context of enhanced oil recovery or soil remediation, we study the role of interactions between polymers and surfactants on the injectivity of formulations containing mixtures of polymers and...


Sign in / Sign up

Export Citation Format

Share Document