scholarly journals Photoelectrochemical, photocatalytic and electrocatalytic behavior of titania films modified by nitrogen and platinum species

Author(s):  
D. Ihnatiuk ◽  
V. Vorobets ◽  
M. Šihor ◽  
C. Tossi ◽  
G. Kolbasov ◽  
...  
2005 ◽  
Vol 579 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Katy J. McKenzie ◽  
Pauline M. King ◽  
Frank Marken ◽  
Catherine E. Gardner ◽  
Julie V. Macpherson

2018 ◽  
Vol 47 (9) ◽  
pp. 1094-1096 ◽  
Author(s):  
Masayuki Shirai ◽  
Yusuke Yamazaki ◽  
Kazuki Takahashi ◽  
Hidetaka Nanao

1990 ◽  
Author(s):  
Longsheng Qian ◽  
Tongqun Miao ◽  
Youxin Yuan ◽  
Nai-Hong Wang

1997 ◽  
Vol 91 (3) ◽  
pp. 153-157 ◽  
Author(s):  
A. Rizzo ◽  
L. Mirenghi ◽  
A. Quirini ◽  
S. Scaglione

1993 ◽  
Vol 321 ◽  
Author(s):  
Gregory J. Exarhos ◽  
Nancy J. Hess

AbstractIsothermal annealing of amorphous TiO2 films deposited from acidic sol-gel precursor solutions results in film densification and concomitant increase in refractive index. Subsequent heating above 300°C leads to irreversible transformation to an anatase crystalline phase. Similar phenomena occur when such amorphous films are subjected to focused cw laser irradiation. Controlled variations in laser fluence are used to density or crystallize selected regions of the film. Low fluence conditioning leads to the evolution of a subtle nanograin-size morphology, evident in AFM images, which appears to retard subsequent film crystallization when such regions are subjected to higher laser fluence. Time-resolved Raman spectroscopy has been used to characterize irradiated regions in order to follow the crystallization kinetics, assess phase homogeneity, and evaluate accompanying changes in residual film stress.


Langmuir ◽  
2001 ◽  
Vol 17 (25) ◽  
pp. 7899-7906 ◽  
Author(s):  
Emmanuel Topoglidis ◽  
Colin J. Campbell ◽  
Anthony E. G. Cass ◽  
James R. Durrant

2011 ◽  
Vol 61 (2) ◽  
pp. 355-361 ◽  
Author(s):  
P. Karasiński ◽  
E. Gondek ◽  
S. Drewniak ◽  
I. V. Kityk

2013 ◽  
Vol 829 ◽  
pp. 917-921
Author(s):  
Saber Ghannadi ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard

Titania thin films were prepared by electrophoretic deposition at various deposition times (1, 5 and 10 min) in constant applied potential (5 V). For this purpose, modified titania sol was prepared as a colloidal suspension. The influence of deposition time on the thickness and optical properties of titania films was investigated. Scanning electron microscope images illustrate compact and homogeneous titania films deposited on FTO substrates. The results show that the film thickness increases with increasing the deposition time. It could be inferred from UV-Vis spectroscopy that increasing the thickness of deposited film causes higher absorbance at UV region. Also, increasing the deposition time from 1 to 5 min leads to increase in optical band gap of the deposited films.


2019 ◽  
Vol 8 (6) ◽  
pp. 802-814
Author(s):  
Jocelyn D. C. Hemming ◽  
Mark Hosford ◽  
Martin M. Shafer

Abstract The in chemico Direct Peptide Reactivity Assay (DPRA) was developed as a non-animal, relatively high throughput, screening tool for skin sensitization potential. Although the Adverse Outcome Pathway (AOP) for respiratory sensitization remains to be fully elucidated, it is recognized that the molecular initiation event for both skin and respiratory sensitization to low molecular weight chemicals involves haptenation with proteins. The DPRA examines the reactivity of a test compound to two model peptides (containing either cysteine or lysine) and consequently is able to screen for both skin and respiratory sensitization potential. The DPRA was primarily developed for and validated with organic compounds and assessment of the applicability of the assay to metal compounds has received only limited attention. This paper reports the successful application of the DPRA to a series of platinum compounds, including hexachloroplatinate and tetrachloroplatinate salts, which are some of the most potent chemical respiratory sensitizers known. Eleven platinum compounds were evaluated using the DPRA protocol as detailed by Lalko et al., with only minor modification. Two palladium compounds with structures similar to that of the platinum species studied and cobalt chloride were additionally tested for comparison. The hexachloroplatinate and tetrachloroplatinate salts showed exceptionally high reactivity with the cysteine peptide (EC15 values of 1.4 and 14 μM, respectively). However, for platinum compounds (e.g. hydrogen hexahydroxyplatinate and tetraammineplatinum) where clinical and epidemiological evidence indicates limited sensitization potential, the cysteine DPRA showed only minor or no reactivity (EC15 values of 24 600 and >30 000 μM, respectively). The outcomes of the lysine peptide assays were less robust and where EC15 was measurable, values were substantially higher than the corresponding results from the cysteine assay. This work supports the value of in chemico peptide reactivity as a metric for assessment of platinum sensitization potential and therefore in screening of new platinum compounds for low or absent sensitization potential. Additional studies are required to determine whether the DPRA may be successfully applied to other metals. We provide details on method modifications and precautions important to the success of the DPRA in the assessment of metal reactivity.


Sign in / Sign up

Export Citation Format

Share Document