scholarly journals Extension of the taxonomic coverage of the family GH126 outside Firmicutes and in silico characterization of its non-catalytic terminal domains

3 Biotech ◽  
2020 ◽  
Vol 10 (10) ◽  
Author(s):  
Lenka Kerényiová ◽  
Štefan Janeček

Abstract The family GH126 is a family of glycoside hydrolases established in 2011. Officially, in the CAZy database, it counts ~ 1000 sequences originating solely from bacterial phylum Firmicutes. Two members, the proteins CPF_2247 from Clostridium perfringens and PssZ from Listeria monocytogenes have been characterized as a probable α-amylase and an exopolysaccharide-specific glycosidase, respectively; their three-dimensional structures being also solved as possessing catalytic (α/α)6-barrel fold. Previously, based on a detailed in silico analysis, the seven conserved sequence regions (CSRs) were identified for the family along with elucidating basic evolutionary relationships within the family members. The present study represents a continuation study focusing on two particular aims: (1) to find out whether the taxonomic coverage of the family GH126 might be extended outside the Firmicutes and, if positive, to deliver those out-of-Firmicutes proteins with putting them into the context of the family; and (2) to identify the family members containing the N- and/or C-terminal extensions of their polypeptide chain, additional to the catalytic (α/α)6-barrel domain, and perform the bioinformatics characterization of the extra domains. The main results could be summarized as follows: (1) 17 bacterial proteins caught by BLAST searches outside Firmicutes (especially from phyla Proteobacteria, Actinobacteria and Bacteroidetes) have been found and convincingly suggested as new family GH126 members; and (2) a thioredoxin-like fold and various leucine-rich repeat motifs identified by Phyre2 structure homology modelling have been recognized as extra domains occurring most frequently in the N-terminal extensions of family GH126 members possessing a modular organization.

2018 ◽  
Vol 3 (02) ◽  
pp. 150-157
Author(s):  
Asad Amir ◽  
Neelesh Kapoor ◽  
Hirdesh Kumar ◽  
Mohd. Tariq ◽  
Mohd. Asif Siddiqui

Sandalwood is a commercially and culturally important plant species belonging to the family Santalaceae and the genus Santalum. In Indian sandalwood is renowned for its oil, which is highly rated for its sweet, fragrant, persistent aroma and the fixative property which is highly demanded by the perfume industry. For better production and varieties, requires to understanding the functions of proteins, their analysis and characterization of proteins sequences and their structures, their localizations in cell and their interaction with other functional partner. Due to limited number of in silico studies on sandalwood, in the present study we have performed in silico analysis by characterization of sandalwood proteins. Total 23 proteins were obtained and characterization using UniProtKB, identifying their physico-chemical parameters using ProtParam tool and prediction of their secondary structure elements using GOR of all 23 proteins.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5704
Author(s):  
Zuzana Janíčková ◽  
Štefan Janeček

This study brings a detailed bioinformatics analysis of fungal and chloride-dependent α-amylases from the family GH13. Overall, 268 α-amylase sequences were retrieved from subfamilies GH13_1 (39 sequences), GH13_5 (35 sequences), GH13_15 (28 sequences), GH13_24 (23 sequences), GH13_32 (140 sequences) and GH13_42 (3 sequences). Eight conserved sequence regions (CSRs) characteristic for the family GH13 were identified in all sequences and respective sequence logos were analysed in an effort to identify unique sequence features of each subfamily. The main emphasis was given on the subfamily GH13_32 since it contains both fungal α-amylases and their bacterial chloride-activated counterparts. In addition to in silico analysis focused on eventual ability to bind the chloride anion, the property typical mainly for animal α-amylases from subfamilies GH13_15 and GH13_24, attention has been paid also to the potential presence of the so-called secondary surface-binding sites (SBSs) identified in complexed crystal structures of some particular α-amylases from the studied subfamilies. As template enzymes with already experimentally determined SBSs, the α-amylases from Aspergillus niger (GH13_1), Bacillus halmapalus, Bacillus paralicheniformis and Halothermothrix orenii (all from GH13_5) and Homo sapiens (saliva; GH13_24) were used. Evolutionary relationships between GH13 fungal and chloride-dependent α-amylases were demonstrated by two evolutionary trees—one based on the alignment of the segment of sequences spanning almost the entire catalytic TIM-barrel domain and the other one based on the alignment of eight extracted CSRs. Although both trees demonstrated similar results in terms of a closer evolutionary relatedness of subfamilies GH13_1 with GH13_42 including in a wider sense also the subfamily GH13_5 as well as for subfamilies GH13_32, GH13_15 and GH13_24, some subtle differences in clustering of particular α-amylases may nevertheless be observed.


Author(s):  
Maria Iqbal ◽  
Reza Maroofian ◽  
Büşranur Çavdarlı ◽  
Florence Riccardi ◽  
Michael Field ◽  
...  

Abstract Purpose We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition. Methods We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable. Results In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4. Conclusion We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans.


2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


Metallomics ◽  
2021 ◽  
Vol 13 (3) ◽  
Author(s):  
Shi-Yong Zhu ◽  
Li-Li Liu ◽  
Yue-Qiang Huang ◽  
Xiao-Wei Li ◽  
Milton Talukder ◽  
...  

Abstract Selenoprotein N (SEPN1) is critical to the normal muscular physiology. Mutation of SEPN1 can raise congenital muscular disorder in human. It is also central to maturation and structure of skeletal muscle in chicken. However, human SEPN1 contained an EF-hand motif, which was not found in chicken. And the biochemical and molecular characterization of chicken SEPN1 remains unclear. Hence, protein domains, transcription factors, and interactions of Ca2+ in SEPN1 were analyzed in silico to provide the divergence and homology between chicken and human in this work. The results showed that vertebrates’ SEPN1 evolved from a common ancestor. Human and chicken's SEPN1 shared a conserved CUGS-helix domain with function in antioxidant protection. SEPN1 might be a downstream target of JNK pathway, and it could respond to multiple stresses. Human's SEPN1 might not combine with Ca2+ with a single EF-hand motif in calcium homeostasis, and chicken SEPN1 did not have the EF-hand motif in the prediction, indicating the EF-hand motif malfunctioned in chicken SEPN1.


Sign in / Sign up

Export Citation Format

Share Document