Effect of Mn2+, Co2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production

2014 ◽  
Vol 65 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Mohammed Battah ◽  
Yassin El-Ayoty ◽  
Abd El-Fatah Abomohra ◽  
Salah Abd El-Ghany ◽  
Ahmed Esmael
Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 367 ◽  
Author(s):  
Hamza Ahmed Pantami ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Soo Yee Lee ◽  
Intan Safinar Ismail ◽  
Siti Munirah Mohd Faudzi ◽  
...  

The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.


2019 ◽  
Vol 10 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Mohammad H. Morowvat ◽  
Younes Ghasemi

Background: Nowadays, chlorophycean microalgae have attained a broad-spectrum attention as a potential candidate for biomass and bioenergy production. Despite their appreciated benefits, one of major problems is their low biomass and lipid productivity. Here we investigated the heterotrophic culture in shake flasks and stirred tank bioreactor to improve the lipid and biomass production in a naturally isolated strain of Chlorella vulgaris. Methods: A naturally isolated C. vulgaris strain was cultivated in BG-11 medium in shake flask and bioreactor. Its biochemical composition and growth kinetic parameters were investigated. Results: The biomass productivity was improved (3.68 fold) under heterotrophic culture compared to basal autotrophic culture condition in shake flask experiment. The total lipid content increased to 44% of total Dry Cell Weight (DCW) during heterotrophic growth after 21 days. Moreover, a great Fatty Acid Methyl Esters (FAME) yield was observed under heterotrophic cultivation. Total biomass and lipid content of microalgae in bioreactor experiment increased to 4.95 and 2.18 g L-1 respectively, during 5 days of the experiment compared to its basic autotrophic culture. Conclusion: The techno-economic aspects of exploiting C. vulgaris as a biodiesel feedstock werealso evaluated. The results imply that heterotrophic cultivation could compensate the low biomass productivity in microalgae for green energy production. Ever growing rates of established patents on application of various genetic and bioengineering-based methods have made it possible to achieve higher lipid contents with reduced total costs for microalgal biodiesel production as well.


Author(s):  
Hamza Ahmed Pantami ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Soo Yee Lee ◽  
Intan Safinar Ismail ◽  
Siti Munirah Mohd Faudzi ◽  
...  

The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.


2011 ◽  
Vol 63 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Virginia A. Herrera-Valencia ◽  
Patricia Y. Contreras-Pool ◽  
Silvia J. López-Adrián ◽  
Santy Peraza-Echeverría ◽  
Luis F. Barahona-Pérez

2016 ◽  
Vol 26 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Hela Ben Amor-Ben Ayed ◽  
Behnam Taidi ◽  
Habib Ayadi ◽  
Dominique Pareau ◽  
Moncef Stambouli

Sign in / Sign up

Export Citation Format

Share Document