Recycling Spent Water from Microalgae Harvesting by Fungal Pellets to Re-Cultivate Chlorella Vulgaris Under Different Nutrient Loads for Biodiesel Production

2021 ◽  
Author(s):  
Ruoyu Chu ◽  
Dan Hu ◽  
Liandong Zhu ◽  
Shuangxi Li ◽  
Zhihong Yin
2021 ◽  
Vol 287 ◽  
pp. 04004
Author(s):  
Zhi Min Ng ◽  
Uganeeswary Suparmaniam ◽  
Man Kee Lam ◽  
Jun Wei Lim ◽  
Siew Hoong Shuit ◽  
...  

Harvesting of microalgae is one of the main challenges in the production of biodiesel due to the small cell size of microalgae cells. Chemical flocculants have been generally used in the harvesting of microalgae, but they are harmful to the environment and relatively costly. Therefore, the utilization of waste biomass in producing bioflocculants is the current research niche to introduce environmental-friendly harvesting method and to minimize the cost of biodiesel production. Thus, in the current work, flocculation Chlorella vulgaris using mild acid-extracted bioflocculants from miscellaneous waste biomass (cockle shell, peanut shell and banana peel) were conducted by varying the pH values, the dosage of bioflocculants and temperatures. Cockle shell bioflocculant demonstrated the best flocculation performance, with highest flocculation efficiency of 85.2% compared to the peanut shell bioflocculant with flocculation efficiency of 37% and banana peel bioflocculant with flocculation efficiency of 16.3%. The optimum flocculation conditions for cockle shell bioflocculant were determined as follow: pH 9, bioflocculant dosage of 140mg/L and temperature of 30oC. The findings herein presented practical applicability of bioflocculants extracted from cockle shell for safe, rapid and inexpensive microalgae harvesting.


2018 ◽  
Vol 240 ◽  
pp. 05023 ◽  
Author(s):  
Agnieszka Patyna ◽  
Małgorzata Płaczek ◽  
Stanisław Witczak

The paper reports the results of Chlorella vulgaris sedimentation process including description of cultivation condition of microalgal biomass. The process of algae cultivation was carried out in photobioreactor comprising systems of carbon dioxide supply, mixing and artificial LED illumination. The growth of microalgae was determined alternatively in three ways by measuring the amount of dry mass over time, counting the cells and measurement of optical density by use of a spectrophotometer. Algae biomass with different concentration was subjected to the separation process by gravity. This led to the determination of the characteristic of sedimentation process for different concentrations and cell sizes. The experimental results indicate that sedimentation process offers a tool with a potential application for microalgae harvesting.


Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 367 ◽  
Author(s):  
Hamza Ahmed Pantami ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Soo Yee Lee ◽  
Intan Safinar Ismail ◽  
Siti Munirah Mohd Faudzi ◽  
...  

The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.


Sign in / Sign up

Export Citation Format

Share Document