scholarly journals Identification of Saturated and Unsaturated Fatty Acids Produced by Chlorella vulgaris as a Potential Candidate for Biodiesel Production

2021 ◽  
Vol 5 (2) ◽  
pp. 238-242
Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 367 ◽  
Author(s):  
Hamza Ahmed Pantami ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Soo Yee Lee ◽  
Intan Safinar Ismail ◽  
Siti Munirah Mohd Faudzi ◽  
...  

The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.


Author(s):  
Hamza Ahmed Pantami ◽  
Muhammad Safwan Ahamad Bustamam ◽  
Soo Yee Lee ◽  
Intan Safinar Ismail ◽  
Siti Munirah Mohd Faudzi ◽  
...  

The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


2016 ◽  
Vol 155 (3) ◽  
pp. 508-518 ◽  
Author(s):  
A. E. KHOLIF ◽  
T. A. MORSY ◽  
O. H. MATLOUP ◽  
U. Y. ANELE ◽  
A. G. MOHAMED ◽  
...  

SUMMARYFifteen lactating Damascus goats (44 ± 0·8 kg body weight) were used in a completely randomized design to evaluate the supplementation ofChlorella vulgarismicroalgae at 0 (Control), 5 (Alg05) and 10 g/goat/day (Alg10) for 12 weeks.Chlorella vulgaristreatments increased feed intake and apparent diet digestibility compared with a control diet. No differences were noted in the ruminal pH and ammonia-N concentrations, but increased concentration of total volatile fatty acids and propionic acid were observed in goats fed with Alg05 and Alg10. Diets of Alg05 and Alg10 increased serum glucose concentration but decreased glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and cholesterol concentrations. Additionally,C. vulgarissupplementation moderately increased milk yield, energy corrected milk, total solids, solids not fat and lactose. Feeding Alg05 and Alg10 diets increased milk unsaturated fatty acids with concomitant increases in total conjugated linoleic acid concentrations. It is concluded that the daily inclusion of 5 or 10 g ofC. vulgarisin the diets of Damascus goats increased milk yield and positively modified milk fatty acid profile.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 221
Author(s):  
S. N. Ibrahim ◽  
K. A. Radzun ◽  
K. Ismail

Chlorella vulgaris is one of the promising microalgae strains that can produce high yield of bio-oils. The C. vulgaris was pretreated with microwave irradiation prior to extraction using supercritical carbon dioxide (SCCO2). Fourier transform infrared spectroscopy (FTIR) analysis showed microwave irradiation pretreatment does not affect the material composition of C. vulgaris. Scanning electron microscopy (SEM) of the microwave irradiation pretreated microalgae showed an agglomeration of the cells with the cells shape became distorted due to rupturing of the cell walls. Optimization of the SCCO2 process parameters (pressure, temperature and CO2 flow rate) was performed by using response surface methodology (RSM) with central composite design (CCD). Two factors significantly affecting the extraction yield were temperature and pressure. The model equation also predicted the optimum condition for the SCCO2 (without microwave pretreatment) at 70 , 5676 psi and 7 sL/ min while optimum condition for SCCO2 (microwave irradiation pretreatment) at 63 , 5948 psi and 10 sL/ min. High amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), -linolenic acid and palmitoleic acid were found in the extracted oil with microwave irradiation pre-treatment sample.  In addition, the polyunsaturated fatty acids (PUFA) content in the microwave irradiation pretreated oil was considerably low and is desirable for biodiesel production. 


2004 ◽  
Vol 58 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Dejan Skala ◽  
Sandra Glisic

Biodiesel is defined as a fuel which may be used as pure biofuel or at high concentration in mineral oil derivatives, in accordance with specific quality standards for transport applications. The main raw material used for biodiesel production is rapeseed, which contains mono-unsaturated acids (about 60%) and also poly-unsaturated fatty acids (C 18:1 and C 18:3) in a lower quantity, as well as some undesired saturated fatty acids (palmitic and stearic acids). Other raw materials have also been used in research and the industrial production of biodiesel (palm oil, sunflower oil, soybean oil, waste plant oil, animal fats, etc). The historical background of biodiesel production, installed industrial capacities, as well as the Directive of the European Parliament and of the Council (May 2003) regarding the promotion of the use of biofuels or other renewable fuels for transport are discussed in the first part of this article. The second part focuses on some new concepts for the future development of technology for biodiesel production, based on the application of non-catalytic transesterification under supercritical conditions or the use of lipases as an alternative catalyst for this reaction.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4609
Author(s):  
Adel W. Almutairi

In the present study, the marine microalga Tisochrysis lutea was cultivated mixotrophically in F2 growth medium with sodium acetate as exogenous carbon source. The medium was composed of different concentrations of nitrogen to determine the impact of nitrogen depletion on cellular growth and chemical composition. Nitrogen depletion led to severely decreased growth and protein content. However, mild nitrogen depletion (0.22 mM NaNO3) led to maximum lipid yield. The fatty acid methyl ester profile also showed increased unsaturation as the nitrogen content decreased. Growth in nitrogen-free medium increased the proportions of mono- and poly-unsaturated fatty acids, while the proportion of saturated fatty acids decreased. Growth under all tested nitrogen levels showed undetectable fatty acids with ≥4 double bonds, indicating these fatty acids had oxidative stability. In addition, all tested nitrogen concentrations led to specific gravity, kinematic viscosity, iodine value, and cetane number that meet the standards for Europe and the U.S.A. However, growth in the presence of nitrogen deficiency enhanced the higher heating value of the resulting biodiesel, a clear advantage from the perspective of energy efficiency. Thus, mixotrophic cultivation of T. lutea with nitrogen limitation provides a promising approach to achieve high lipid productivity and production of high-quality biodiesel.


Author(s):  
Zahra Zarei Jeliani ◽  
Nasrin Fazelian ◽  
Morteza Yousefzadi

Abstract The aim of this work was to describe and compare the main fatty acids and biodiesel indices of some green and brown macroalgae (seaweeds) collected from the Persian Gulf, as an alternative raw material for renewable biodiesel production. The macroalgae showed low lipid content (< 10% DW) but marine macroalgae with total lipid content > 5% DW are a good source for biodiesel production. The total lipid content and saturated fatty acids (SFAs) of green algae were higher than that of brown algae, while higher accumulation of unsaturated fatty acids (USFAs) was observed in brown seaweeds. Further, the main fatty acid in all studied seaweeds was palmitic acid (C16:0), which was followed by oleic acid (C18:1). The results of this work showed that three of the green algae, especially C. sertularioides, could be a potential source of fatty acids for biodiesel production owing to their high total lipid content, high cold flow indices (long chain saturated factor, cold filter plugging point and cloud point) and a fatty acid profile rich in SFAs with a high amount of C18:1, which is suitable for oil-based bio products. In contrast, the brown seaweeds Sargassum boveanum and Sirophysalis trinodis lipid content had a high proportion of polyunsaturated fatty acids (PUFAs), which makes them suitable for replacing fish oil.


2014 ◽  
Vol 65 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Mohammed Battah ◽  
Yassin El-Ayoty ◽  
Abd El-Fatah Abomohra ◽  
Salah Abd El-Ghany ◽  
Ahmed Esmael

2016 ◽  
Vol 8 (2) ◽  
pp. 92
Author(s):  
Hamidou SENOU ◽  
Cai X. ZHENG ◽  
Gabriel SAMAKE ◽  
Mamadou B. TRAORE ◽  
Fousseni FOLEGA ◽  
...  

<p class="1Body">The methyl esters of fatty acids composition of the oil from <em>jatropha curcas</em> seeds were analyzed by gas chromatography-mass spectrometer GC-MS. Fourteen components were found to be representative with 99.52% of the total content of seed oils. The main constituents were unsaturated fatty acids (71.93%) and saturated fatty acids (27.59%). For the saturated fatty acids composition such as palmitic and stearic acid, the rate was 15.80% and 10.79%, respectively. Linoleic acid (39.58%) and oleic acid (30.41%) were obtained in highest concentration among the unsaturated fatty acids identified in the seeds oil of <em>Jatropha curcas</em> from Guizhou. This value also justifies the fluidity of the oil at room temperature. A high percentage of polyunsaturated fatty acids (39.58%) and a slightly lower rate of monounsaturated fatty acids (32.35%) were also observed. The seed oils profile of Guizhou <em>Jatropha curcas</em> presents the desirable fatty acid C14 to C18 and interesting features for the biodiesel production.</p>


Sign in / Sign up

Export Citation Format

Share Document