The effect of pitching rate on the production of higher alcohols by top-fermenting yeast in wheat beer fermentation

2019 ◽  
Vol 69 (7) ◽  
pp. 713-726
Author(s):  
Mengqi Wang ◽  
Zhongguan Sun ◽  
Yaping Wang ◽  
Zhiyang Wei ◽  
Bingxu Chen ◽  
...  
2012 ◽  
Vol 118 (3) ◽  
pp. 280-284 ◽  
Author(s):  
Katrin Juliane Schwarz ◽  
Lisa Inken Boitz ◽  
Frank-Jürgen Methner

2019 ◽  
Vol 64 (2) ◽  
pp. 162-171
Author(s):  
Ivan Petelkov ◽  
Vesela Shopska ◽  
Rositsa Denkova-Kostova ◽  
Georgi Kostov ◽  
Velislava Lyubenova

Three different kinetic models – Monod’s model, Monod’s model with substrate inhibition, and Monod's model with substrate and product inhibition were developed for studying of beer fermentation with free and immobilized cells at different main fermentation and maturation temperatures. The most accurate model was Monod's model with substrate and product inhibition. It showed that maturation temperature had no effect on primary metabolism but it affected significantly the secondary metabolites production. In regard to carbonyl compounds and esters, the increase in maturation temperature led to different trends for free and immobilized cells. Regarding the higher alcohols, the increase in maturation temperature resulted in increase in their yield coefficients for both immobilized and free cells. A sensory evaluation of beers produced with free and immobilized cells were also carried out and the results showed similar results for two beer types.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 290
Author(s):  
Vanesa Postigo ◽  
Margarita García ◽  
Juan Mariano Cabellos ◽  
Teresa Arroyo

Multiple studies in recent years have shown the potential of Saccharomyces wild yeasts to produce craft beers with new flavour profiles and other desirable properties. Yeasts isolated from food (wine, bread, kombucha…) have shown potential promise for application in brewing. The aim of this study is to evaluate the ability of 141 Saccharomyces yeast strains isolated from the Madrilenian agriculture (from grapes, must, wine, vineyard, and cellars) to produce a novel ale beer. Fermentation activity of the strains was compared against the commercial strain Saccharomyces cerevisiae Safale S-04. In addition to the other aspects such as melatonin production, thirty-three volatile compounds belonging to higher alcohols, esters, aldehydes/cetones, acids, lactones and phenolic groups, were analysed by GC for selection of the strains. Ten strains were finally chosen, among which the most relevant was the strain G 520 showing a higher production of esters, higher alcohols and acids compared with S-04. The apparent attenuation for this strain was lower than commercial strain, which translates into more residual sugars. Furthermore, G 520 was more capable of producing significantly higher amounts of melatonin studied by HPLC, as well as showing a higher antioxidant capacity. Consumer study showed that G 520 strain could be used to produce a potential beer that has a place in the current market.


1990 ◽  
Vol 36 (1) ◽  
pp. 61-64 ◽  
Author(s):  
Paolo Giudici ◽  
Patrizia Romano ◽  
Carlo Zambonelli

A hundred strains of Saccharomyces cerevisiae were examined for the ability to produce higher alcohols. In the strains tested the production of higher alcohols was found to be an individual strain characteristic and, as such, was statistically significant. The characteristics of the strains used (flocculation ability, foaming ability, killer character, and non-H2S production) were found to be uncorrelated to isobutanol and isoamyl alcohol production, whereas the production of high levels of n-propanol was found to be related to inability to produce H2S. This, in turn, suggests a link to methionine biosynthesis. Key words: Saccharomyces cerevisiae, higher alcohols, biometry, H2S production.


2021 ◽  
Vol 11 (10) ◽  
pp. 4658
Author(s):  
Magdalena Januszek ◽  
Paweł Satora

Quality of plum jerkum is significantly associated to the profile of volatile compounds. Therefore, we decided to assess the impact of various fermentation types on selected properties of plum jerkums, especially compounds which contribute to the aroma of the finished product. We used the following yeast strains: S. cerevisiae S1, H. uvarum H2, and Ethanol RED (S. cerevisiae). Moreover, we considered spontaneous fermentation. S. cerevisiae and H. uvarum strains were isolated during the fermentation of Čačanska Lepotica or Węgierka Dąbrowicka (plum cultivars), respectively. As for fermentation type, spontaneous fermentation of H. uvarum H2 provided the best results. It could be associated to the fact that plum juices fermented with H. uvarum H2 presented the highest concentration of terpenoids, esters, or some higher alcohols. In the current paper, application of indigenous strains of yeasts resulted in the required oenological characteristics, e.g., highest fermentation efficiency and concentration of ethanol was determined in juices fermented with Ethanol RED (S. cerevisiae) and also with S. cerevisiae S1. Our results suggested that indigenous strains of yeasts present in plums demonstrate great potential for the production of plum jerkums of high quality.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Guidong Huang ◽  
Hong Ren ◽  
Ali Wang ◽  
Xinran Wan ◽  
Ziying Wu ◽  
...  

Abstract Purpose Higher alcohol is a by-product of the fermentation of wine, and its content is one of the most important parameters that affect and are used to appraise the final quality of Chinese rice wine. Ammonium compensation is an efficient and convenient method to reduce the content of higher alcohols, but the molecule mechanism is poorly understood. Therefore, an iTRAQ-based proteomic analysis was designed to reveal the proteomic changes of Saccharomyces cerevisiae to elucidate the molecular mechanism of ammonium compensation in reducing the content of higher alcohols. Methods The iTRAQ proteomic analysis method was used to analyze a blank group and an experimental group with an exogenous addition of 200 mg/L (NH4)2HPO4 during inoculation. The extracted intracellular proteins were processed by liquid chromatography-mass spectrometry and identified using bioinformatics tools. Real-time quantitative polymerase chain reaction was used to verify the gene expression of differentially expressed proteins. Results About 4062 proteins, including 123 upregulated and 88 downregulated proteins, were identified by iTRAQ-based proteomic analysis. GO and KEGG analysis uncovered that significant proteins were concentrated during carbohydrate metabolism, such as carbon metabolism, glyoxylate, and dicarboxylate metabolism, pyruvate metabolism, and the nitrogen metabolism, such as amino acid synthesis and catabolism pathway. In accordance with the trend of differential protein regulation in the central carbon metabolism pathway and the analysis of carbon metabolic flux, a possible regulatory model was proposed and verified, in which ammonium compensation facilitated glucose consumption, regulated metabolic flow direction into tricarboxylic acid, and further led to a decrease in higher alcohols. The results of RT-qPCR confirmed the authenticity of the proteomic analysis results at the level of gene. Conclusion Ammonium assimilation promoted by ammonium compensation regulated the intracellular carbon metabolism of S. cerevisiae and affected the distribution of metabolic flux. The carbon flow that should have gone to the synthesis pathway of higher alcohols was reversed to the TCA cycle, thereby decreasing the content of higher alcohols. These findings may contribute to an improved understanding of the molecular mechanism for the decrease in higher alcohol content through ammonium compensation.


Author(s):  
Zhuang Zeng ◽  
Zhuoshi Li ◽  
Shaoxia Guo ◽  
Jing Lv ◽  
Shouying Huang ◽  
...  

2021 ◽  
Vol 291 ◽  
pp. 120073
Author(s):  
Feng Zeng ◽  
Chalachew Mebrahtu ◽  
Xiaoying Xi ◽  
Longfei Liao ◽  
Jie Ren ◽  
...  

2020 ◽  
Vol 137 ◽  
pp. 105945 ◽  
Author(s):  
Bin Kang ◽  
Shuxia Qi ◽  
Xiaoman Wang ◽  
Fenghua Bai ◽  
Na Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document