scholarly journals Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconiaazorica on native forest of Azores

2019 ◽  
Vol 69 (13) ◽  
pp. 1309-1327 ◽  
Author(s):  
Catarina Drumonde Melo ◽  
Christopher Walker ◽  
Claudia Krüger ◽  
Paulo A.V. Borges ◽  
Sara Luna ◽  
...  

Abstract Purpose Arbuscular mycorrhizal fungi (AMF) play important key roles in the soil ecosystems as they link plants to the root-inaccessible part of soil. The aims of this study were to investigate which environmental factors influence the spatial and temporal structuring of AMF communities associated to Picconia azorica in two Azorean islands (Terceira and São Miguel islands), and investigate the seasonal variation in AMF communities between the two islands. Methods Communities of AMF associated with P. azorica in native forest of two Azorean islands (Terceira and São Miguel) were characterised by spore morphology or molecular analysis. Results Forty-five AMF spore morphotypes were detected from the four fragments of P. azorica forest representing nine families of AMF. Acaulosporaceae (14) and Glomeraceae (9) were the most abundant families. AMF density and root colonisation varied significantly between islands and sampling sites. Root colonisation and spore density exhibited temporal patterns, which peaked in spring and were higher in Terceira than in São Miguel. The relative contribution of environmental factors showed that factors such as elevation, relative air humidity, soil pH, and soil available P, K, and Mg influenced AMF spore production and root colonisation. Conclusion Different sporulation patterns exhibited by the members of the commonest families suggested different life strategies. Adaptation to a particular climatic and soil condition and host phenology may explain seasonal differences in sporulation patterns. Cohorts of AMF associated to P. azorica are shaped by regional processes including environmental filters such as soil properties and natural disturbance.

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1468
Author(s):  
Nieves Goicoechea

The association that many crops can establish with the arbuscular mycorrhizal fungi (AMF) present in soils can enhance the resistance of the host plants against several pathogens, including Verticillium spp. The increased resistance of mycorrhizal plants is mainly due to the improved nutritional and water status of crops and to enhanced antioxidant metabolism and/or increased production of secondary metabolites in the plant tissues. However, the effectiveness of AMF in protecting their host plants against Verticillium spp. may vary depending on the environmental factors. Some environmental factors, such as the concentration of carbon dioxide in the atmosphere, the availability of soil water and the air and soil temperatures, are predicted to change drastically by the end of the century. The present paper discusses to what extent the climate change may influence the role of AMF in protecting crops against Verticillium-induced wilt, taking into account the current knowledge about the direct and indirect effects that the changing environment can exert on AMF communities in soils and on the symbiosis between crops and AMF, as well as on the development, incidence and impact of diseases caused by soil-borne pathogens.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 689-701
Author(s):  
Xiaoge Han ◽  
Changchao Xu ◽  
Yutao Wang ◽  
Dan Huang ◽  
Qiang Fan ◽  
...  

AbstractWeed invasion is a prevailing problem in modestly managed lawns. Less attention has been given to the exploration of the role of arbuscular mycorrhizal fungi (AMF) under different invasion pressures from lawn weeds. We conducted a four-season investigation into a Zoysia tenuifolia Willd. ex Thiele (native turfgrass)–threeflower beggarweed [Desmodium triflorum (L.) DC.] (invasive weed) co-occurring lawn. The root mycorrhizal colonizations of the two plants, the soil AM fungal communities and the spore densities under five different coverage levels of D. triflorum were investigated. Desmodium triflorum showed significantly higher root hyphal and vesicular colonizations than those of Z. tenuifolia, while the root colonizations of both species varied significantly among seasons. The increased coverage of D. triflorum resulted in the following effects: (1) the spore density initially correlated with mycorrhizal colonizations of Z. tenuifolia but gradually correlated with those of D. triflorum. (2) Correlations among soil properties, spore densities, and mycorrhizal colonizations were more pronounced in the higher coverage levels. (3) Soil AMF community compositions and relative abundances of AMF operational taxonomic units changed markedly in response to the increased invasion pressure. The results provide strong evidence that D. triflorum possessed a more intense AMF infection than Z. tenuifolia, thus giving rise to the altered host contributions to sporulation, soil AMF communities, relations of soil properties, spore densities, and root colonizations of the two plants, all of which are pivotal for the successful invasion of D. triflorum in lawns.


2006 ◽  
Vol 63 (4) ◽  
pp. 380-385 ◽  
Author(s):  
Milene Moreira ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia (Bert.) O. Ktze., a native forest tree from Brazil, is under extinction risk. This tree depends on arbuscular mycorrhizal fungi for growth and development, especially in tropical low-P soils but, despite being a conifer, Araucaria does not form ectomycorrhiza, but only the arbuscular endomycorrhiza. This study aimed at surveying data on the spore density and root colonization (CR) by arbuscular mycorrhizal fungi (AMF) in Araucaria angustifolia forest ecosystems, in order to discriminate natural, implemented, and anthropic action-impacted ecosystems, by means of Canonical Discriminant Analysis (CDA). Three ecosystems representative of the Campos do Jordão (SP, Brazil) region were selected: 1. a native forest (FN); 2. a replanted Araucaria forest (R); and 3. a replanted Araucaria forest, submitted to accidental fire (RF). Rhizosphere soil and roots were sampled in May and October, 2002, for root colonization, AMF identification, and spores counts. Root percent colonization rates at first collection date were relatively low and did not differ amongst ecosystems. At the second period, FN presented higher colonization than the other two areas, with much higher figures than during the first period, for all areas. Spore density was lower in FN than in the other areas. A total of 26 AMF species were identified. The percent root colonization and spore numbers were inversely related to each other in all ecosystems. CDA indicated that there is spatial distinction among the three ecosystems in regard to the evaluated parameters.


2017 ◽  
Vol 10 (1) ◽  
pp. 302
Author(s):  
Cillas Pollicarto Silva ◽  
Paulo Furtado Mende Filho ◽  
Vânia Felipe Freire Gomes ◽  
Claudia Miranda Martins ◽  
Cleyton Saialy Medeiros Cunha ◽  
...  

Anthropic activities, combined with the natural ones, may trigger soil degradation, which has increased day by day and contributed to accentuating the desertification processes, resulting in losses of biodiversity and fertility of the soils. Because of that, the utilization of tools that indicate the stages of such degradation and recovery becomes necessary, in order to make viable and adequate management of these areas. Thus, the study on arbuscular mycorrhizal fungi (AMF), as a perspective to facilitate the recovery of degraded areas has increased, especially for the production of glomalin-related soil protein, which is of great importance for aggregate stability, besides showing a great potential of utilization as soil quality indicator. Therefore, the present study aimed to evaluate the contents of glomalin-related soil protein, correlating with chemical, physical and biological attributes in areas of the municipality of Irauçuba-CE: area degraded by overgrazing, area under process of natural revegetation managed with the exclusion of domestic animals and area of native forest, characterized by tree-shrub Caatinga vegetation. Disturbed soil samples were collected in the layer of 0-10 cm in each area and evaluated for AMF attributes, soil chemical attributes and physical attributes. The results obtained with the tests of means prove that, among the three areas, only the native forest showed significant differences with respect to both fractions of the protein. However, in regard to spore density and aggregate stability, the areas of native forest and exclusion showed the best mean values. The content glomalin-related soil protein (GRPS), associated with other edaphic attributes, contributes to discriminating the quality and to the monitoring of areas with different levels of soil degradation. The highest correlation values were observed among the contents of calcium, nitrogen and organic carbon and both GRSP fractions (easily extractable: GRSPEE,which represents the recently deposited frsction that has not yet suffered biochemical alterations in the soil; total: GRSPT, which is strongly adhered to the clays), indicating that the protein directly influences the contents of these elements in the soil.


2019 ◽  
Vol 11 (14) ◽  
pp. 282 ◽  
Author(s):  
Tharles Mesquita Araújo ◽  
Krisle da Silva ◽  
Gilmara Maria Duarte Pereira ◽  
Alexandre Curcino ◽  
Sidney Luiz Stürmer ◽  
...  

Arbuscular mycorrhizal fungi (AMF) are important components of the soil microbiota in terrestrial ecosystems, under the influence of various factors such as soil use and management, and can be adapted to a structure and diversity of fungal communities. The aim of this survey was to evaluate the influence of different systems of land use and management on AMF diversity in the Roraima State, Brazil. We collected soil samples in agroforestry, conventional soybean planting, conventional corn and native forest. After 150 days of incubation in a greenhouse, we extracted the spores in order to evaluate AMF, volume and to determine taxonomic identification. We found 16 species of AMF and the genus Acaulospora was the most frequent, followed by Glomus. Soil under agroforestry system had the highest species richness and the native forest, the lowest. On the other hand, soybean and corn areas presented greater density values than agroforestry system and native forest. In the agroforestry system, SOM attributes, Al3+ and H + Al had influence in AMF species richness. Thus, agroforestry constitute sustainable alternative influencing AMF communities in these ecosystems.


2005 ◽  
Vol 56 (12) ◽  
pp. 1405 ◽  
Author(s):  
R. M. Kelly ◽  
D. G. Edwards ◽  
J. P. Thompson ◽  
R. C. Magarey

Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane (Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores (Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities (0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments (0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mg P/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap (TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-term cane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabaiporn Nacoon ◽  
Sanun Jogloy ◽  
Nuntavun Riddech ◽  
Wiyada Mongkolthanaruk ◽  
Jindarat Ekprasert ◽  
...  

AbstractIn this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.


2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


Sign in / Sign up

Export Citation Format

Share Document