scholarly journals Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabaiporn Nacoon ◽  
Sanun Jogloy ◽  
Nuntavun Riddech ◽  
Wiyada Mongkolthanaruk ◽  
Jindarat Ekprasert ◽  
...  

AbstractIn this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.

2019 ◽  
Vol 157 (1) ◽  
pp. 31-44 ◽  
Author(s):  
K. Surendirakumar ◽  
R. R. Pandey ◽  
T. Muthukumar

AbstractDespite the global importance of Capsicum species, there is limited information on the indigenous endomycorrhizal fungal association in this crop. Therefore, the diversity and colonization patterns of arbuscular mycorrhizal fungi (AMF) in roots of Naga King chilli (Capsicum chinense) were assessed during pre-flowering, flowering and fruit ripening growth stages under a sub-tropical shifting cultivation system of North Eastern India. All the roots examined had AMF colonization and the presence of Paris-type arbuscular mycorrhizal morphology is reported for the first time in C. chinense. A total of 11 AMF spore morphotypes were isolated from both field and trap culture soils. Maximum AMF spore density and root colonization were recorded during the pre-flowering and flowering stages, respectively. The influence of Funneliformis geosporum, individually or in combination with Pseudomonas fluorescens and Azotobacter chroococcum, on growth and yield of C. chinense, was evaluated in a pot experiment using sterilized and non-sterilized soils. The application of AMF and P. fluorescens to sterilized soil significantly increased the growth, flower and fruit production, and nutrient content of C. chinense. The highest growth rates and yields of C. chinense in non-sterilized soils were achieved when AMF was combined with both P. fluorescens and A. chroococcum. The results of the current study indicate the value of applying microorganisms to improve plant growth and performance in chillies. One of the mechanisms for this could be the facilitated assimilation of nutrients promoted by AMF and bacterial bioinoculants.


2019 ◽  
Vol 13 ((03) 2019) ◽  
pp. 380-385 ◽  
Author(s):  
Soraya Marx Bamberg ◽  
Silvio Junio Ramos ◽  
Marco Aurelio Carbone Carneiro ◽  
José Oswaldo Siqueira

Fertilizer application can enhance the nutritional value of plants, such effects being influenced by the presence of arbuscular mycorrhizal fungi (AMF). Nutrients × AMF interactions are well-known for variety of elements but very little has been addressed on biofortification of selenium (Se) in plants grown in tropical soils. The purpose of this study was to evaluate the effect of Se application and AMF inoculation on growth and micronutrient contents on soybean plants as forage grass. The experiments were conducted in a completely randomized factorial design with five Se doses (0.0, 0.5, 1.0, 2.0 and 3.0 mg kg-1 for soybean plants, and 0.0, 0.5, 1.0, 3.0 and 6.0 mg kg-1 for forage plants), with and without AMF inoculation in three replicates. The results showed that soil Se had only slight effect on soybean growth but it caused a two-fold increase on grain yield. However, the growth of forage grass was enhanced by Se application when AMF was present. The AMF inoculation reduced benefit for soybean growth and yield but marked positive effect on forage grass at high doses of Se. Selenium contents in both plants were increased by its application in soil, being such effect proportional to soil applied doses. Selenium application and AMF inoculation had marked effects on micronutrients contents in both soybean plants and forage grass and they may contribute to Se and micronutrient biofortification.


1995 ◽  
Vol 75 (1) ◽  
pp. 269-275 ◽  
Author(s):  
S. M. Boyetchko ◽  
J. P. Tewari

The relative susceptibility of selected barley cultivars produced in western Canada to vesicular-arbuscular mycorrhizal (VAM) fungi under field and greenhouse conditions was evaluated in this study. Cultivars tested under field conditions at the University of Alberta and Lacombe research stations showed no significant differences in VAM colonization of barley roots; colonization was light. Greenhouse trials at the University of Alberta with eight cultivars inoculated with individual mycorrhizal species illustrated significant differences among the barley cultivars in their reactions to Glomus dimorphicum, G. intraradices, and G. mosseae. Distinct differences were observed in the ability of each Glomus species to colonize the barley cultivars. The VAM fungi increased growth and yield in some cultivars, depending on the Glomus species. This study indicates that a degree of host-specificity exists in VAM fungi and that the host-mycorrhizal fungus genotypes may influence the effectiveness of the symbiosis. Key words: Barley, cultivars, susceptibility, VA mycorrhizal fungi


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 127 ◽  
Author(s):  
Arjun Kafle ◽  
Kevin Cope ◽  
Rachel Raths ◽  
Jaya Krishna Yakha ◽  
Senthil Subramanian ◽  
...  

Phosphorus is an essential macronutrient required for plant growth and development. It is central to many biological processes, including nucleic acid synthesis, respiration, and enzymatic activity. However, the strong adsorption of phosphorus by minerals in the soil decreases its availability to plants, thus reducing the productivity of agricultural and forestry ecosystems. This has resulted in a complete dependence on non-renewable chemical fertilizers that are environmentally damaging. Alternative strategies must be identified and implemented to help crops acquire phosphorus more sustainably. In this review, we highlight recent advances in our understanding and utilization of soil microbes to both solubilize inorganic phosphate from insoluble forms and allocate it directly to crop plants. Specifically, we focus on arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and phosphate-solubilizing bacteria. Each of these play a major role in natural and agroecosystems, and their use as bioinoculants is an increasing trend in agricultural practices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Etesami ◽  
Byoung Ryong Jeong ◽  
Bernard R. Glick

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.


Author(s):  
Mônica D. S. da S. Fernandes ◽  
Marciana B. de Morais ◽  
Francisco F. Mesquita-Oliveira ◽  
Cláudia Ulisses ◽  
José F. de Medeiros ◽  
...  

ABSTRACT The plant Varronia leucocephala is widely used in Brazil for its therapeutic properties. However, a major problem for the seedlings is the low percentage of root formation. The objective of this study was to establish a rooting protocol for V. leucocephala cuttings, using phytoregulators and microelements associated with arbuscular mycorrhizal fungi. The auxin indole-3-butyric acid (IBA) concentration of 1500 mg L-1 showed the best rooting percentage, and it is proposed associating the microelements zinc and boron with the highest IBA doses. Although an increase in the rooting percentage was observed in the presence of zinc, it was not the most suitable for improving the percentage of propagation. Consequently, association of arbuscular mycorrhizal fungi with 1500 mg L-1 IBA plus zinc was selected to evaluate the rooting percentage and sprouting of the aerial part, dry biomass of roots and aerial part, number of leaves, height, mycorrhizal colonization and dependency, spore density, and nutrients of branches and roots. These results show that using zinc with the highest doses of IBA (1500 mg L-1) in plants inoculated with the arbuscular mycorrhizal fungus (Gigaspora albida) was the most effective at promoting the vegetative propagation of V. leucocephala.


2013 ◽  
Vol 18 (1) ◽  
pp. 17
Author(s):  
. Prihastuti ◽  
. Sudaryono

The descriptive explored study was conducted in districts Bumi Nabung, Sari Bakti, Seputih Banyak and Rumbia, Central Lampung, Indonesia. The parameters observed consisted of chemical and biological aspects of soil, which directly affected plant growth. This activity was carried out as preliminary studies for the diagnosis of soybean extensification on acid dry land. The results showed that all locations observed were less suitable for soybean development, indicated by low pH values (4.35 – 6.00), nutrient contents (N < 0.1% and C-organic < 2.0%), and low soil microbial populations. Population of bacteria was 17 × 103 – 29 × 104 CFU g-1 soil and fungi was 21 × 101 – 63 ×102 CFU g-1 soil of soils. Beneficial microbe types included non-symbiotic nitrogen-fixing bacteria (with the capability to fix the Nitrogen around 0.16 – 1.53 mM 100 ml-1 medium h-1), phosphate solubilizing bacteria (with the value index 1.22 – 6.25) and arbuscular mycorrhizal fungi (with root colonization by 70.50 – 90.33% and the number of sporeswere 49 – 175 spores g-1 soil). This less suitable land can be improved to become suitable for developing soybean by using innovative technology. Soil biological and chemical improvement technology through liming and amelioration as well as organic and bio-fertilizers applications were required for soybeans extensification on acid dry land.[How to Cite: Prihastuti and Sudaryono. 2013. Soil Chemical and Biological Characteristics for Diagnostic the Potency of Acid Dry Land for Soybean Extensification. J Trop Soils, 18 (1) : 17-24. doi: 10.5400/jts.2013.18.1.17][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.17]


Sign in / Sign up

Export Citation Format

Share Document