scholarly journals Conceptual design of sonic boom stealth supersonic transports

Author(s):  
Yicheng Sun ◽  
Howard Smith

AbstractThis paper introduces a supersonic transport aircraft design model developed in the GENUS aircraft conceptual design environment. A conceptual design model appropriate to supersonic transports with low-to-medium-fidelity methods are developed in GENUS. With this model, the authors reveal the relationship between the sonic boom signature and the lift and volume distributions and the possibility to optimise the lift distribution and volume distribution together so that they can cancel each other at some region. A new inspiring design concept—sonic boom stealth is proposed by the authors. The sonic boom stealth concept is expected to inspire the supersonic aircraft designers to design low-boom concepts through aircraft shaping and to achieve low ground impacts. A family of different classes of supersonic aircraft, including a single-seat supersonic demonstrator (0.47 psf), a 10-passenger supersonic business jet (0.90 psf) and a 50-seat supersonic airliner (1.02 psf), are designed to demonstrate the sonic boom stealth design principles. Although, there are challenges to balance the volume with packaging and control requirements, these concepts prove the feasibility of low-boom low-drag design for supersonic transports from a multidisciplinary perspective.

Author(s):  
Yicheng Sun ◽  
Howard Smith

There has been a worldwide interest to develop a supersonic business jet (SSBJ) for a minimum range of 4000 nm with low sonic boom intensity and high fuel efficiency. An SSBJ design model is developed in the GENUS aircraft conceptual design environment. With the design model, a low-boom low-drag SSBJ concept is designed and optimized. This article studies the design concept for its operational performances. The sustained supersonic cruise flight is studied to find out the fuel-efficient Mach number and altitude combinations. The combined supersonic and subsonic cruise flight scenarios are studied to evaluate the feasibility of boom-free flight routes. The one-stop supersonic cruise flight scenario is studied to compare the fuel consumption and time advantage over subsonic airliners. The off-design sonic boom intensity is studied to explore the operational space assuming there would be a sonic boom intensity limit in the future. Through the studies, it is revealed that there is a corresponding most fuel-efficient operating altitude for a specific cruise Mach number. To operate the aircraft near the cutoff Mach number leads to both increases in the fuel consumption (6.3%–8.1%) and the mission time (11.7%–13.1%). The business-class supersonic transport (231 g/PAX/km) consumes nearly three times fuel as the economic-class supersonic transport (77 g/PAX/km), which is still far more than the economic-class subsonic transport (20 g/PAX/km). Off-design sonic boom intensity studies reveal different trends against the common understanding: the sonic boom intensity does not necessarily decrease as the altitude increases; the sonic boom intensity does not necessarily decrease as the Mach number decreases.


Author(s):  
H Smith ◽  
D Sziroczák ◽  
GE Abbe ◽  
P Okonkwo

The design of aircraft has evolved over time from the classical design approach to the more modern computer-based design method utilizing multivariate design optimization. In recent years, aircraft concepts and configurations have become more diverse and complex thus pushing many synthesis packages beyond their capability. Furthermore, many examples of aircraft design software focus on the analysis of one particular concept thus requiring separate packages for each concept. This can lead to complications in comparing concepts and configurations as differences in performance may originate from different prediction toolsets being used. This paper presents the GENUS Aircraft Design Framework developed by Cranfield University’s Aircraft Design Group to address these issues. The paper reviews available aircraft design methodologies and describes the challenges faced in their development and application. Following this, the GENUS aircraft design environment is introduced, along with the theoretical background and practical reasoning behind the program architecture. Particular attention is given to the programming, choice of methodology, and optimization techniques involved. Subsequently, some applications of the developed methodology, implemented in the framework are presented to illustrate the diversity of the approach. Three special classes of aircraft design concept are presented briefly.


2007 ◽  
Vol 111 (1126) ◽  
pp. 761-776 ◽  
Author(s):  
H. Smith

Abstract Key issues relating to the Supersonic Business Jet (SBJ) concept are reviewed with the intent to assess the readiness of enabling technologies and hence the concept itself. The multidisciplinary nature of aircraft design precludes an in-depth analysis of each specific aspect, which could individually be the subject of a separate discipline review, hence an overview is presented. The review looks at the market, environmental issues, with particular reference to the sonic boom phenomenon & solutions, technological issues, including prediction methods, flight testing, systems, certification and interested aerospace companies and design organisations. It is apparent that the need to reduce the sonic boom signature is vital if the vehicle is to be permitted to operate over land and hence be economically viable. It is clear that sonic boom acceptability requirements must be set if resources are to be effectively focused and designs are to converge. Despite this challenge, considerable investment is aimed at de-risking many of the enabling technologies and raising readiness levels. Many technologies are moving beyond theoretical and numerical analysis into the experimental and flight test domains. Collaboration between the civil and military sectors is increasing. Clearly, supersonic air travel is not an efficient means of personal conveyance; however, concerns for the environment are difficult to balance against the ‘value of time’ benefits offered by the SBJ concept. Air travel, of which this is a specialised form, is important to the global economy. Continued effort in the areas of human factors, customer demand and certification & requirements would be beneficial.


Author(s):  
M. W. Goldstraw ◽  
C. Bil ◽  
C. Nicholson

An important aspect of successful aircraft design is the concept of ‘right first time’, as any design changes downstream can be costly and may cause project delays. This is most applicable to the conceptual design phase. However, in the early stages of aircraft design, data is limited and prone to inaccuracies. Consequently, a design will typically traverse through a number of iterations, improving and refining with each step. Over the past 15 years, computer-based tools have become commonplace in aircraft design [1]. In general, most computer-based tools have been developed for the more advanced stages of the design process. For these tools to be useful in conceptual design, they must be user-friendly, interactive, and provide quick return times. A classic example is the aerodynamic load data required for structural design. Both are dependent on geometric parameters, which may still be subject to change. To complete the analysis within practical time constraints, a highly integrated and automated system is required [2, 3]. This paper presents such a system, developed using industry accepted software components including AutoCAD, VSAERO and MSC Nastran. This system allows an automatic, structured topology mesh to be generated from a basic three-view aircraft drawing, which inputs directly into VSAERO for loads calculations. The loads are subsequently transferred to MSC Patran as a pre-processor for structural analysis using MSC Nastran. If the result is unsatisfactory, the geometry or placement of structural components can easily be changed and the process repeated. The design environment was developed using FORTRAN90. The results of an application of this system to a simple wing, as well as a regional transport aircraft, are also presented.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Grazia Piccirillo ◽  
Nicole Viola ◽  
Roberta Fusaro ◽  
Luigi Federico

One of the most critical regulatory issues related to supersonic flight arises from limitations imposed by community noise acceptability. The most efficient way to ensure that future supersonic aircraft will meet low-noise requirements is the verification of noise emissions from the early stages of the design process. Therefore, this paper suggests guidelines for the Landing and Take-Off (LTO) noise assessment of future civil supersonic aircraft in conceptual design. The supersonic aircraft noise model is based on the semi-empirical equations employed in the early versions of the Aircraft NOise Prediction Program (ANOPP) developed by NASA, whereas sound attenuation due to atmospheric absorption has been considered in accordance with SAE ARP 866 B. The simulation of the trajectory leads to the prediction of the aircraft noise level on ground in terms of several acoustic metrics (LAmax, SEL, PNLTM and EPNL). Therefore, a dedicated validation has been performed, selecting the only available supersonic aircraft of the Aircraft Noise and Performance database (ANP), that is, the Concorde, through the matching with Noise Power Distance (NPD) curves for LAmax and SEL, obtaining a maximum prediction error of ±2.19%. At least, an application to departure and approach procedures is reported to verify the first noise estimations with current noise requirements defined by ICAO at the three certification measurement points (sideline, flyover, approach) and to draw preliminary considerations for future low-noise supersonic aircraft design.


2011 ◽  
Vol 133 (10) ◽  
Author(s):  
Joël Brezillon ◽  
Gerald Carrier ◽  
Martin Laban

This paper presents a multidisciplinary optimization framework developed by the authors and applied to small-size supersonic aircraft. The multidisciplinary analysis suite is based on the combination of low (empirical) and high-fidelity computational fluid dynamics (CFD) and computational structure mechanics (CSM) tools for predicting the overall aircraft performance and the sonic boom overpressure at supersonic flight, which represents the most challenging environmental constraint for supersonic aircraft. The analysis suite is coupled with a multi-objective optimization strategy for quantifying the trade-off between the maximum take-off weight, mission range, and the sonic boom overpressure. The optimization framework is applied to a small-size supersonic business-jet cruising at Mach number M = 1.8 and featuring a double delta wing. The trade-offs between disciplines are well captured and an optimized configuration achieving the target mission range with a lower maximum take-off weight, and a moderate sonic boom signature is obtained through changes in wing dihedral and sweep. A more drastic reduction of the sonic boom signature is also obtained but at the cost of a significant reduction of the aircraft performance.


2019 ◽  
Vol 124 (1271) ◽  
pp. 76-95
Author(s):  
Y. Sun ◽  
H. Smith

ABSTRACTThis paper evaluates six supersonic business jet (SSBJ) concepts in a multidisciplinary design analysis optimisation (MDAO) environment in terms of their aerodynamics and sonic boom intensities. The aerodynamic analysis and sonic boom prediction are investigated by a number of conceptual-level numerical approaches. The panel method PANAIR is integrated to perform automated aerodynamic analysis. The drag coefficient is corrected by the Harris wave drag formula and form factor method. For sonic boom prediction, the near-field pressure is predicted through the Whitham F-function method. The F-function is decomposed to the F-function due to volume and the F-function due to lift to investigate the separate effect on sonic boom. The propagation method for the near-field signature in a stratified windy atmosphere is the waveform parameter method. In this research, using the methods described and publically available data on the concepts, the supersonic drag elements and sonic boom signature due to volume distribution and lift distribution are analysed. Based on the analysis, low-boom and low-drag design principles are identified.


Sign in / Sign up

Export Citation Format

Share Document