scholarly journals L-Serine Treatment is Associated with Improvements in Behavior, EEG, and Seizure Frequency in Individuals with GRIN-Related Disorders Due to Null Variants

2022 ◽  
Author(s):  
Ilona Krey ◽  
Sarah von Spiczak ◽  
Kathrine M. Johannesen ◽  
Christiane Hikel ◽  
Gerhard Kurlemann ◽  
...  

AbstractPathogenic missense variants in GRIN2A and GRIN2B may result in gain or loss of function (GoF/LoF) of the N-methyl-D-aspartate receptor (NMDAR). This observation gave rise to the hypothesis of successfully treating GRIN-related disorders due to LoF variants with co-agonists of the NMDAR. In this respect, we describe a retrospectively collected series of ten individuals with GRIN2A- or GRIN2B-related disorders who were treated with L-serine, each within an independent n-of-1 trial. Our cohort comprises one individual with a LoF missense variant with clinical improvements confirming the above hypothesis and replicating a previous n-of-1 trial. A second individual with a GoF missense variant was erroneously treated with L-serine and experienced immediate temporary behavioral deterioration further supporting the supposed functional pathomechanism. Eight additional individuals with null variants (that had been interpreted as loss-of-function variants despite not being missense) again showed clinical improvements. Among all nine individuals with LoF missense or null variants, L-serine treatment was associated with improvements in behavior in eight (89%), in development in four (44%), and/or in EEG or seizure frequency in four (44%). None of these nine individuals experienced side effects or adverse findings in the context of L-serine treatment. In summary, we describe the first evidence that L-serine treatment may not only be associated with clinical improvements in GRIN-related disorders due to LoF missense but particularly also null variants.

2018 ◽  
Author(s):  
Gabrielle Wheway ◽  
Liliya Nazlamova ◽  
Nervine Meshad ◽  
Samantha Hunt ◽  
Nicola Jackson ◽  
...  

AbstractAt least six different proteins of the spliceosome, including PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, are mutated in autosomal dominant retinitis pigmentosa (adRP). These proteins have recently been shown to localise to the base of the connecting cilium of the retinal photoreceptor cells, elucidating this form of RP as a retinal ciliopathy. In the case of loss-of-function variants in these genes, pathogenicity can easily be ascribed. In the case of missense variants, this is more challenging. Furthermore, the exact molecular mechanism of disease in this form of RP remains poorly understood.In this paper we take advantage of the recently published cryo EM-resolved structure of the entire human spliceosome, to predict the effect of a novel missense variant in one component of the spliceosome; PRPF31, found in a patient attending the genetics eye clinic at Bristol Eye Hospital. Monoallelic variants in PRPF31 are a common cause of autosomal dominant retinitis pigmentosa (adRP) with incomplete penetrance. We use in vitro studies to confirm pathogenicity of this novel variant PRPF31 c.341T>A, p.Ile114Asn.This work demonstrates how in silico modelling of structural effects of missense variants on cryo-EM resolved protein complexes can contribute to predicting pathogenicity of novel variants, in combination with in vitro and clinical studies. It is currently a considerable challenge to assign pathogenic status to missense variants in these proteins.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kai Yu Ma ◽  
Michiel R. Fokkens ◽  
Teus van Laar ◽  
Dineke S. Verbeek

AbstractPathogenic variants in PINK1 cause early-onset Parkinson’s disease. Although many PINK1 variants have been reported, the clinical significance is uncertain for the majority of them. To gain insights into the consequences of PINK1 missense variants in a systematic manner, we selected 50 PINK1 missense variants from patient- and population-wide databases and systematically classified them using Sherloc, a comprehensive framework for variant interpretation based on ACMG-AMP guidelines. We then performed functional experiments, including mitophagy and Parkin recruitment assays, to assess the downstream consequences of PINK1 variants. Analysis of PINK1 missense variants based on Sherloc showed that the patient databases over-annotate variants as likely pathogenic. Furthermore, our study shows that pathogenic PINK1 variants are most often linked to a loss-of-function for mitophagy and Parkin recruitment, while this is not observed for variants of unknown significance. In addition to the Sherloc framework, the added layer of evidence of our functional tests suggests a reclassification of 9/50 missense variants. In conclusion, we suggest the assessment of multiple layers of evidence, including functional data on top of available clinical and population-based data, to support the clinical classification of a variant and show that the presence of a missense variant in PINK1 in a Parkinson’s disease case does not automatically imply pathogenicity.


2021 ◽  
Author(s):  
Sathiya N. Manivannan ◽  
Jolien Roovers ◽  
Noor Smal ◽  
Candace T. Myers ◽  
Dilsad Turkdogan ◽  
...  

FZR1, which encodes the Cdh1 subunit of the Anaphase Promoting Complex, plays an important role in neurodevelopment, both through the control of the cell cycle and through its multiple functions in post-mitotic neurons. In this study, the evaluation of 250 unrelated patients with developmental epileptic encephalopathies (DEE) and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Two variants led to the same amino acid change. All individuals had a DEE with childhood-onset generalized epilepsy, intellectual disability, mild ataxia, and normal head circumference. Two individuals were diagnosed with the DEE subtype Myoclonic Atonic Epilepsy (MAE). We provide gene burden testing using two independent statistical tests to support FZR1 association with DEE. Further, we provide functional evidence that the missense variants are loss-of-function (LOF) alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homolog fzr and overexpression studies, we show that patient variants do not support proper neurodevelopment. Along with a recent report of a patient with neonatal-onset DEE with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and DEE, and expands the associated phenotype. We conclude that heterozygous LOF of FZR1 leads to DEE associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay, and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed MAE/DEE cases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Giovanni Birolo ◽  
Silvia Benevenuta ◽  
Piero Fariselli ◽  
Emidio Capriotti ◽  
Elisa Giorgio ◽  
...  

Missense variants are among the most studied genome modifications as disease biomarkers. It has been shown that the “perturbation” of the protein stability upon a missense variant (in terms of absolute ΔΔG value, i.e., |ΔΔG|) has a significant, but not predictive, correlation with the pathogenicity of that variant. However, here we show that this correlation becomes significantly amplified in haploinsufficient genes. Moreover, the enrichment of pathogenic variants increases at the increasing protein stability perturbation value. These findings suggest that protein stability perturbation might be considered as a potential cofactor in diseases associated with haploinsufficient genes reporting missense variants.


2020 ◽  
Author(s):  
Emmanuelle Masson ◽  
Vinciane Rebours ◽  
Louis Buscail ◽  
Frédérique Frete ◽  
Mael Pagenault ◽  
...  

ABSTRACTA gain-of-function missense variant in the CELA3B gene, p.Arg90Cys (c.268C>T), has recently been reported to cause pancreatitis in an extended pedigree. Herein, we sequenced the CELA3B gene in 644 genetically unexplained French chronic pancreatitis (CP) patients (all unrelated) and 566 controls. No predicted loss-of-function variants were identified. None of the six low frequency or common missense variants detected showed significant association with CP. Nor did the aggregate rare/very rare missense variants (n=14) show any significant association with CP. However, p.Arg90Leu (c.269G>T), which was found in 4 patients but no controls and affects the same amino acid as p.Arg90Cys, serves to revert p.Arg90 to the human elastase ancestral allele. Since p.Arg90Leu has previously been shown to exert a similar functional effect to p.Arg90Cys, our findings not only confirm the involvement of CELA3B in the etiology of CP but also pinpoint a new evolutionarily adaptive site in the human genome.


Author(s):  
Lot Snijders Blok ◽  
Arianna Vino ◽  
Joery den Hoed ◽  
Hunter R. Underhill ◽  
Danielle Monteil ◽  
...  

Abstract Purpose Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described. Methods We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants. Results We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein. Conclusion Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities.


2019 ◽  
Author(s):  
Michael Maglegaard Jepsen ◽  
Douglas M. Fowler ◽  
Rasmus Hartmann-Petersen ◽  
Amelie Stein ◽  
Kresten Lindorff-Larsen

AbstractDecreased cost of human exome and genome sequencing provides new opportunities for diagnosing genetic disorders, but we need better and more robust methods for interpreting sequencing results including determining whether and by which mechanism a specific missense variants may be pathogenic. Using the protein PTEN (phosphatase and tensin homolog) as an example, we show how recent developments in both experiments and computational modelling can be used to determine whether a missense variant is likely to be pathogenic. One approach relies on multiplexed experiments that enable determination of the effect of all possible individual missense variants in a cellular assay. Another approach is to use computational methods to predict variant effects. We compare two different multiplexed experiments and two computational methods to classify variant effects in PTEN. We distinguish between methods that focus on effects on protein stability and protein-specific methods that are more directly related to enzyme activity. Our results on PTEN suggest that ~60% of pathogenic variants cause loss of function because they destabilise the folded protein which is subsequently degraded. Methods that quantify a broader range of effects on PTEN activity perform better at predicting variant effects. Either experimental method performs better than the corresponding computational predictions, so that e.g. experiments that probe cellular abundance perform better at identifying pathogenic variants than predictions of thermodynamic stability. Our results suggest that loss of stability of PTEN is a key driver for disease, and we hypothesize that experiments and prediction methods that probe protein stability can be used to find variants with similar mechanisms in other genes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zheng Yie Yap ◽  
Yo Han Park ◽  
Saskia B. Wortmann ◽  
Adam C. Gunning ◽  
Shlomit Ezer ◽  
...  

Abstract Background ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane-anchored protein involved in diverse processes including mitochondrial dynamics, mitochondrial DNA organization, and cholesterol metabolism. Biallelic deletions (null), recessive missense variants (hypomorph), and heterozygous missense variants or duplications (antimorph) in ATAD3A lead to neurological syndromes in humans. Methods To expand the mutational spectrum of ATAD3A variants and to provide functional interpretation of missense alleles in trans to deletion alleles, we performed exome sequencing for identification of single nucleotide variants (SNVs) and copy number variants (CNVs) in ATAD3A in individuals with neurological and mitochondrial phenotypes. A Drosophila Atad3a Gal4 knockin-null allele was generated using CRISPR-Cas9 genome editing technology to aid the interpretation of variants. Results We report 13 individuals from 8 unrelated families with biallelic ATAD3A variants. The variants included four missense variants inherited in trans to loss-of-function alleles (p.(Leu77Val), p.(Phe50Leu), p.(Arg170Trp), p.(Gly236Val)), a homozygous missense variant p.(Arg327Pro), and a heterozygous non-frameshift indel p.(Lys568del). Affected individuals exhibited findings previously associated with ATAD3A pathogenic variation, including developmental delay, hypotonia, congenital cataracts, hypertrophic cardiomyopathy, and cerebellar atrophy. Drosophila studies indicated that Phe50Leu, Gly236Val, Arg327Pro, and Lys568del are severe loss-of-function alleles leading to early developmental lethality. Further, we showed that Phe50Leu, Gly236Val, and Arg327Pro cause neurogenesis defects. On the contrary, Leu77Val and Arg170Trp are partial loss-of-function alleles that cause progressive locomotion defects and whose expression leads to an increase in autophagy and mitophagy in adult muscles. Conclusion Our findings expand the allelic spectrum of ATAD3A variants and exemplify the use of a functional assay in Drosophila to aid variant interpretation.


2020 ◽  
Author(s):  
Zheng Yie Yap ◽  
YoHan Park ◽  
Saskia B. Wortmann ◽  
Adam C. Gunning ◽  
Sukyoung Lee ◽  
...  

ABSTRACTBackgroundThe ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane anchored protein involved in diverse processes including mitochondrial dynamics, mitochondrial DNA organization, and cholesterol metabolism. Biallelic deletions (null), recessive missense variants (hypomorph), and heterozygous missense variants or duplications (antimorph) in ATAD3A lead to neurological syndromes in humans.ObjectiveTo expand the mutational spectrum of ATAD3A variants and to provide functional interpretation of missense alleles in trans to deletion alleles.MethodsExome sequencing was used to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in ATAD3A in individuals with neurological and mitochondrial phenotypes. A Drosophila Atad3A Gal4 trap null allele was generated using CRISPR-Cas9 genome editing technology to aid interpretation of variants.ResultsWe report 13 individuals from 8 unrelated families with biallelic ATAD3A variants. Four of the identified missense variants, p.(Leu77Val), p.(Phe50Leu), p.(Arg170Trp), p.(Gly236Val), were inherited in trans to loss-of-function alleles. A fifth missense variant, p.(Arg327Pro), was homozygous. Affected individuals exhibited findings previously associated with ATAD3A pathogenic variation, including developmental delay, hypotonia, congenital cataracts, hypertrophic cardiomyopathy, and cerebellar atrophy. Drosophila studies indicated that Phe50Leu, Gly236Val, and Arg327Pro are severe loss-of-function alleles leading to early developmental lethality and neurogenesis defects, whereas Leu77Val and Arg170Trp are partial loss of function alleles that cause progressive locomotion defects. Moreover, Leu77Val and Arg170Trp expression leads to an increase in autophagy and mitophagy in adult muscles.ConclusionOur findings expand the allelic spectrum of ATAD3A variants, and exemplify the use of a functional assay in Drosophila to aid variant interpretation.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009835
Author(s):  
Yong Shen ◽  
Rick Li ◽  
Kristian Teichert ◽  
Kara E. Montbleau ◽  
Jeffrey M. Verboon ◽  
...  

Increased production of fetal hemoglobin (HbF) can ameliorate the severity of sickle cell disease and β-thalassemia. BCL11A has been identified as a key regulator of HbF silencing, although its precise mechanisms of action remain incompletely understood. Recent studies have identified pathogenic mutations that cause heterozygous loss-of-function of BCL11A and result in a distinct neurodevelopmental disorder that is characterized by persistent HbF expression. While the majority of cases have deletions or null mutations causing haploinsufficiency of BCL11A, several missense variants have also been identified. Here, we perform functional studies on these variants to uncover specific liabilities for BCL11A’s function in HbF silencing. We find several mutations in an N-terminal C2HC zinc finger that increase proteasomal degradation of BCL11A. We also identify a distinct C-terminal missense variant in the fifth zinc finger domain that we demonstrate causes loss-of-function through disruption of DNA binding. Our analysis of missense variants causing loss-of-function in vivo illuminates mechanisms by which BCL11A silences HbF and also suggests potential therapeutic avenues for HbF induction to treat sickle cell disease and β-thalassemia.


Sign in / Sign up

Export Citation Format

Share Document