scholarly journals Recent Progress in Fiber-Optic Hydrophones

2021 ◽  
Vol 11 (1) ◽  
pp. 109-122
Author(s):  
Zhou Meng ◽  
Wei Chen ◽  
Jianfei Wang ◽  
Xiaoyang Hu ◽  
Mo Chen ◽  
...  

AbstractFiber-optic hydrophone (FOH) is a significant type of acoustic sensor, which can be used in both military and civilian fields such as underwater target detection, oil and natural gas prospecting, and earthquake inspection. The recent progress of FOH is introduced from five aspects, including large-scale FOH array, very-low-frequency detection, fiber-optic vector hydrophone (FOVH), towed linear array, and deep-sea and long-haul transmission. The above five aspects indicate the future development trends in the FOH research field, and they also provide a guideline for the practical applications of FOH as well as its array.

Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Shi ◽  
Ye Tian ◽  
Antoine Gervais

AbstractThe tremendous growth of data traffic has spurred a rapid evolution of optical communications for a higher data transmission capacity. Next-generation fiber-optic communication systems will require dramatically increased complexity that cannot be obtained using discrete components. In this context, silicon photonics is quickly maturing. Capable of manipulating electrons and photons on the same platform, this disruptive technology promises to cram more complexity on a single chip, leading to orders-of-magnitude reduction of integrated photonic systems in size, energy, and cost. This paper provides a system perspective and reviews recent progress in silicon photonics probing all dimensions of light to scale the capacity of fiber-optic networks toward terabits-per-second per optical interface and petabits-per-second per transmission link. Firstly, we overview fundamentals and the evolving trends of silicon photonic fabrication process. Then, we focus on recent progress in silicon coherent optical transceivers. Further scaling the system capacity requires multiplexing techniques in all the dimensions of light: wavelength, polarization, and space, for which we have seen impressive demonstrations of on-chip functionalities such as polarization diversity circuits and wavelength- and space-division multiplexers. Despite these advances, large-scale silicon photonic integrated circuits incorporating a variety of active and passive functionalities still face considerable challenges, many of which will eventually be addressed as the technology continues evolving with the entire ecosystem at a fast pace.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Renxin Wang ◽  
Wei Shen ◽  
Wenjun Zhang ◽  
Jinlong Song ◽  
Nansong Li ◽  
...  

AbstractDetecting low-frequency underwater acoustic signals can be a challenge for marine applications. Inspired by the notably strong response of the auditory organs of pectis jellyfish to ultralow frequencies, a kind of otolith-inspired vector hydrophone (OVH) is developed, enabled by hollow buoyant spheres atop cilia. Full parametric analysis is performed to optimize the cilium structure in order to balance the resonance frequency and sensitivity. After the structural parameters of the OVH are determined, the stress distributions of various vector hydrophones are simulated and analyzed. The shock resistance of the OVH is also investigated. Finally, the OVH is fabricated and calibrated. The receiving sensitivity of the OVH is measured to be as high as −202.1 dB@100 Hz (0 dB@1 V/μPa), and the average equivalent pressure sensitivity over the frequency range of interest of the OVH reaches −173.8 dB when the frequency ranges from 20 to 200 Hz. The 3 dB polar width of the directivity pattern for the OVH is measured as 87°. Moreover, the OVH is demonstrated to operate under 10 MPa hydrostatic pressure. These results show that the OVH is promising in low-frequency underwater acoustic detection.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2528 ◽  
Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes, in addition to immunity to electromagnetic interference and chemical corrosions. Thus, the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within (−6°, 4°), and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes in addition to immunity to electromagnetic interference and chemical corrosions. Thus the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within ±5°, and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


2006 ◽  
Vol 78 (9) ◽  
pp. 1703-1713 ◽  
Author(s):  
Morinobu Endo ◽  
Takuya Hayashi ◽  
Yoong-Ahm Kim

Carbon nanotubes consisting of a rolled graphene layer built from sp2 units have attracted the imagination of scientists as 1D macromolecules. Here, we will describe the recent progress on selective synthesis of various carbon nanotubes through the judicious control of synthetic conditions and their practical applications of these carbon nanotubes in the fields of electrochemical systems, nanocomposites, and medical devices. It is envisaged that carbon nanotubes will play an important role in the development of nanotechnology in the near future.


2014 ◽  
Vol 1 ◽  
pp. 7 ◽  
Author(s):  
Yihao Yang ◽  
Baile Zhang ◽  
Erping Li ◽  
Hongsheng Chen

Invisibility cloaks have experienced a tremendous development in the past few years, but the current technologies to convert the cloaks into practical applications are still facing numerous bottlenecks. In this paper, we provide the review of the challenges and recent progress in the invisibility cloaks from a practical perspective. In particular, the following key challenges such as non-extreme parameters, homogeneity, omnidirectivity, full polarization, large scale and broad band are addressed. We analyze the physical mechanisms behind the challenges and consequently evaluate the merits and defects of the recent solutions. We anticipate some compromises on the ideal cloaks are required in order to achieve practical invisibility cloaks in the future.


Author(s):  
Yingying Wang ◽  
Dan Liu ◽  
Meiling Sun ◽  
Jinping Liu

Due to their safety, environmental benignity, and affordability, aqueous sodium/potassium-ion batteries (ASIBs/APIBs) have attracted increasing attention as promising candidates for large-scale stationary energy storage systems. Nevertheless, the practical applications of...


2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


Author(s):  
Ron Avi Astor ◽  
Rami Benbenisthty

Since 2005, the bullying, school violence, and school safety literatures have expanded dramatically in content, disciplines, and empirical studies. However, with this massive expansion of research, there is also a surprising lack of theoretical and empirical direction to guide efforts on how to advance our basic science and practical applications of this growing scientific area of interest. Parallel to this surge in interest, cultural norms, media coverage, and policies to address school safety and bullying have evolved at a remarkably quick pace over the past 13 years. For example, behaviors and populations that just a decade ago were not included in the school violence, bullying, and school safety discourse are now accepted areas of inquiry. These include, for instance, cyberbullying, sexting, social media shaming, teacher–student and student–teacher bullying, sexual harassment and assault, homicide, and suicide. Populations in schools not previously explored, such as lesbian, gay, bisexual, transgender, and queer students and educators and military- and veteran-connected students, become the foci of new research, policies, and programs. As a result, all US states and most industrialized countries now have a complex quilt of new school safety and bullying legislation and policies. Large-scale research and intervention funding programs are often linked to these policies. This book suggests an empirically driven unifying model that brings together these previously distinct literatures. This book presents an ecological model of school violence, bullying, and safety in evolving contexts that integrates all we have learned in the 13 years, and suggests ways to move forward.


Sign in / Sign up

Export Citation Format

Share Document