scholarly journals Construction and purification of ANK gene deleted recombinant goatpox virus

VirusDisease ◽  
2020 ◽  
Vol 31 (4) ◽  
pp. 526-533
Author(s):  
Xueping Zhang ◽  
Jianjun Tong ◽  
· Tuohetiniyazi Milikaimu ◽  
Chuanchuan He ◽  
Wei Wang ◽  
...  
Keyword(s):  
2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Jihane Hamdi ◽  
Zahra Bamouh ◽  
Mohammed Jazouli ◽  
Meryem Alhyane ◽  
Najet Safini ◽  
...  

Abstract Background Goatpox is a viral disease caused by infection with goatpox virus (GTPV) of the genus Capripoxvirus, Poxviridae family. Capripoxviruses cause serious disease to livestock and contribute to huge economic losses. Goatpox and sheeppox are endemic to Africa, particularly north of the Equator, the Middle East and many parts of Asia. GTPV and sheeppox virus are considered host-specific; however, both strains can cause clinical disease in either goats or sheep with more severe disease in the homologous species and mild or sub-clinical infection in the other. Goatpox has never been reported in Morocco, Algeria or Tunisia despite the huge population of goats living in proximity with sheep in those countries. To evaluate the susceptibility and pathogenicity of indigenous North African goats to GTPV infection, we experimentally inoculated eight locally bred goats with a virulent Vietnamese isolate of GTPV. Two uninfected goats were kept as controls. Clinical examination was carried out daily and blood was sampled for virology and for investigating the antibody response. After necropsy, tissues were collected and assessed for viral DNA using real-time PCR. Results Following the experimental infection, all inoculated goats displayed clinical signs characteristic of goatpox including varying degrees of hyperthermia, loss of appetite, inactivity and cutaneous lesions. The infection severely affected three of the infected animals while moderate to mild disease was noticed in the remaining goats. A high antibody response was developed. High viral DNA loads were detected in skin crusts and nodules, and subcutaneous tissue at the injection site with cycle threshold (Ct) values ranging from 14.6 to 22.9, while lower viral loads were found in liver and lung (Ct = 35.7 and 35.1). The results confirmed subcutaneous tropism of the virus. Conclusion Clinical signs of goatpox were reproduced in indigenous North African goats and confirmed a high susceptibility of the North African goat breed to GTPV infection. A clinical scoring system is proposed that can be applied in GTPV vaccine efficacy studies.


2009 ◽  
Vol 162 (1-2) ◽  
pp. 251-257 ◽  
Author(s):  
V. Bhanot ◽  
V. Balamurugan ◽  
V. Bhanuprakash ◽  
G. Venkatesan ◽  
A. Sen ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Chuanchuan He ◽  
Jianjun Tong ◽  
Xueping Zhang ◽  
Milikaimu Tuohetiniyazi ◽  
Yu Zhang ◽  
...  

Abstract Background Sheeppox and goatpox are both economically important animal diseases in which pathogens are goatpox virus (GTPV) and sheeppox virus (SPPV). They can’t cause cross-species infection between sheep and goats in general. But in recent decades, the infection of sheep by goatpox or goats by sheeppox has been reported. The literature has indicated that the occurrence of these cases has a significant and direct relationship with mutations of ankyrin genes families (ANK genes 010,138,140,141.2,145) located in two-terminal regions of capripoxvirus genomes. So it is very important to decipher these nucleotides and their coding amino acid sequences of the five genes regarded as host range and virulence factors for effective prevention and control of capripoxvirus diseases. Methods In this study, all the ankyrin genes of three goatpox virus, two sheeppox virus, and one GTPV vaccine strains from Nanjiang areas of Xinjiang province of China during 2010–2011 were collected, amplified, cloned and sequenced. The sequence of every ankyrin genes has been compared with not only sequences from six viruses but also all sequences from three species of capripoxvirus genus from Gene bank, and every ANK gene’s mutated nucleotides and amino acids have been screened, and the relationship of genetic evolution among different virus strains has been analyzed, as well as the domain architecture of these genes was forecasted and analyzed. Results The six capripoxvirus strains can be well-distinguished GTPV and SPPV based on five ANK genes’ sequence identicalness except for GTPV-SS strain, which showed higher identicalness with SPPV. The ANK gene sequence of the GTPV-SS strain was 100% identical with SPPV-M1 (ANK138,140,145) and SPPV-M2 (ANK138,145), respectively. Phylogenetically, these six capripoxvirus strains were also grouped into the same cluster of India reference strains in lineages and showed extreme identical conservative or variable regions with India capripoxvirus isolates by sequence alignment. Moreover, for the functional domains, these ANK genes of capripoxvirus except for ANK gene 145, are identical in size, and ANK genes 145 of SPPV are usually 100 bp (approximately 30 aa) longer than those of GTPV and eventually form a PRANC domain at C-terminus. Conclusions The isolated strain of GTPV-SS may be a cross-species infection or the collected material was contaminated, and the inferred Capripox outbreak in Xinjiang in 2010 can be introduced from India. ANK genes 138,140,141.2 and 145 of capripoxvirus can be used as the target genes to identify GTPV and SPPV. Moreover, the four ANK genes determining the host range are more significant than the ANK gene 010. These ANK genes play combining roles for their function.


2020 ◽  
Vol 57 (4) ◽  
pp. 550-553
Author(s):  
Olatunde Babatunde Akanbi ◽  
Kati Franzke ◽  
Adeyinka Jeremy Adedeji ◽  
Reiner Ulrich ◽  
Jens Peter Teifke

Infection of small ruminants with peste des petits ruminants virus (PPRV) and goatpox virus (GTPV) are endemic and can have devastating economic consequences in Asia and Africa. Co-infection with these viruses have recently been reported in goats and sheep in Nigeria. In this study, we evaluated samples from the lips of a red Sokoto goat, and describe co-infection of keratinocytes with PPRV and GTPV using histopathology and transmission electron microscopy. Eosinophilic cytoplasmic inclusion bodies were identified histologically, and ultrastructural analysis revealed numerous large cytoplasmic viral factories containing poxvirus particles and varying sizes of smaller cytoplasmic inclusions composed of PPRV nucleocapsids. These histopathological and ultrastructural findings show concurrent infection with the 2 viruses for the first time as well as the detection of PPRV particles in epithelial cells of the mucocutaneous junction of the lip.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Elisabeth Mathijs ◽  
Frank Vandenbussche ◽  
Andy Haegeman ◽  
Ahmad Al-Majali ◽  
Kris De Clercq ◽  
...  

This is a report of the complete genome sequence of the goatpox virus strain Gorgan, which was obtained directly from a commercial live attenuated vaccine (Caprivac, Jordan Bio-Industries Centre).


Virology ◽  
2009 ◽  
Vol 391 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Min Zheng ◽  
Ningyi Jin ◽  
Qi Liu ◽  
Xiaowei Huo ◽  
Yang Li ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
Zhixun Zhao ◽  
Guohua Wu ◽  
Xueliang Zhu ◽  
Xinmin Yan ◽  
Yongxi Dou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document