lysosomal storage disease
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 25)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Swathi Devireddy ◽  
Shawn M. Ferguson

Progranulin is a lysosomal protein whose haploinsufficiency causes frontotemporal dementia, while homozygous loss of progranulin causes neuronal ceroid lipofuscinosis, a lysosomal storage disease. The sensitivity of cells to progranulin deficiency raises important questions about how cells coordinate intracellular trafficking of progranulin to ensure its efficient delivery to lysosomes. In this study, we discover that progranulin interactions with prosaposin, another lysosomal protein, first occur within the lumen of the endoplasmic reticulum (ER) and are required for the efficient ER exit of progranulin. Mechanistically, we identify an interaction between prosaposin and Surf4, a receptor that promotes loading of lumenal cargos into COPII-coated vesicles, and establish that Surf4 is critical for the efficient export of progranulin and prosaposin from the ER. Collectively, this work demonstrates that a network of interactions occurring early in the secretory pathway promote the ER exit and subsequent lysosomal delivery of newly translated progranulin and prosaposin.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shinji Tamura ◽  
Yumiko Tamura ◽  
Yuya Nakamoto ◽  
Daisuke Hasegawa ◽  
Masaya Tsuboi ◽  
...  

Positioning head tilt is a neurological sign that has recently been described in dogs with congenital cerebellar malformations. This head tilt is triggered in response to head movement and is believed to be caused by a lack of inhibition of the vestibular nuclei by the cerebellar nodulus and ventral uvula (NU), as originally reported cases were dogs with NU hypoplasia. We hypothesized that other diseases, such as lysosomal storage diseases that cause degeneration in the whole brain, including NU, may cause NU dysfunction and positioning head tilt. Videos of the clinical signs of canine lysosomal storage disease were retrospectively evaluated. In addition, post-mortem NU specimens from each dog were histopathologically evaluated. Nine dogs were included, five with lysosomal storage disease, two Chihuahuas with neuronal ceroid lipofuscinosis (NCL), two Border Collies with NCL, one Shikoku Inu with NCL, two Toy Poodles with GM2 gangliosidosis, and two Shiba Inus with GM1 gangliosidosis. Twenty-eight videos recorded the clinical signs of the dogs. In these videos, positioning head tilt was observed in seven of nine dogs, two Chihuahuas with NCL, one Border Collie with NCL, one Shikoku Inu with NCL, one Toy Poodle with GM2 gangliosidosis, and two Shiba Inus with GM1 gangliosidosis. Neuronal degeneration and loss of NU were histopathologically confirmed in all diseases. As positioning head tilt had not been described until 2016, it may have been overlooked and may be a common clinical sign and pathophysiology in dogs with NU dysfunction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sourav K. Bose ◽  
Brandon M. White ◽  
Meghana V. Kashyap ◽  
Apeksha Dave ◽  
Felix R. De Bie ◽  
...  

AbstractIn utero base editing has the potential to correct disease-causing mutations before the onset of pathology. Mucopolysaccharidosis type I (MPS-IH, Hurler syndrome) is a lysosomal storage disease (LSD) affecting multiple organs, often leading to early postnatal cardiopulmonary demise. We assessed in utero adeno-associated virus serotype 9 (AAV9) delivery of an adenine base editor (ABE) targeting the Idua G→A (W392X) mutation in the MPS-IH mouse, corresponding to the common IDUA G→A (W402X) mutation in MPS-IH patients. Here we show efficient long-term W392X correction in hepatocytes and cardiomyocytes and low-level editing in the brain. In utero editing was associated with improved survival and amelioration of metabolic, musculoskeletal, and cardiac disease. This proof-of-concept study demonstrates the possibility of efficiently performing therapeutic base editing in multiple organs before birth via a clinically relevant delivery mechanism, highlighting the potential of this approach for MPS-IH and other genetic diseases.


2021 ◽  
Author(s):  
S. Devireddy ◽  
S.M. Ferguson

AbstractProgranulin is a lysosomal protein whose haploinsufficiency causes frontotemporal dementia while homozygous loss of progranulin causes neuronal ceroid lipofuscinosis, a lysosomal storage disease. The sensitivity of cells to progranulin deficiency raises important questions about how cells coordinate intracellular trafficking of progranulin to ensure its efficient delivery to lysosomes. In this study, we discover that progranulin interacts with prosaposin, another lysosomal protein, within the lumen of the endoplasmic reticulum (ER) and that prosaposin is required for the efficient ER exit of progranulin. Mechanistically, we identify an interaction between prosaposin and Surf4, a receptor that promotes loading of lumenal cargos into COPII coated vesicles, and establish that Surf4 is critical for the efficient export of progranulin and prosaposin from the ER. Collectively, this work demonstrates a network of interactions occurring early in the secretory pathway that promote the ER exit and subsequent lysosomal delivery of newly translated progranulin and prosaposin.


Author(s):  
Shroddha Bose ◽  
Hailan He ◽  
Tobias Stauber

The regulation of luminal ion concentrations is critical for the function of, and transport between intracellular organelles. The importance of the acidic pH in the compartments of the endosomal-lysosomal pathway has been well-known for decades. Besides the V-ATPase, which pumps protons into their lumen, a variety of ion transporters and channels is involved in the regulation of the organelles' complex ion homeostasis. Amongst these are the intracellular members of the CLC family, ClC-3 through ClC-7. They localize to distinct but overlapping compartments of the endosomal-lysosomal pathway, partially with tissue-specific expression. Functioning as 2Cl−/H+ exchangers, they can support the vesicular acidification and accumulate luminal Cl−. Mutations in the encoding genes in patients and mouse models underlie severe phenotypes including kidney stones with CLCN5 and osteopetrosis or hypopigmentation with CLCN7. Dysfunction of those intracellular CLCs that are expressed in neurons lead to neuronal defects. Loss of endosomal ClC-3, which heteromerizes with ClC-4, results in neurodegeneration. Mutations in ClC-4 are associated with epileptic encephalopathy and intellectual disability. Mice lacking the late endosomal ClC-6 develop a lysosomal storage disease with reduced pain sensitivity. Human gene variants have been associated with epilepsy, and a gain-of-function mutation causes early-onset neurodegeneration. Dysfunction of the lysosomal ClC-7 leads to a lysosomal storage disease and neurodegeneration in mice and humans. Reduced luminal chloride, as well as altered calcium regulation, has been associated with lysosomal storage diseases in general. This review discusses the properties of endosomal and lysosomal Cl−/H+ exchange by CLCs and how various alterations of ion transport by CLCs impact organellar ion homeostasis and function in neurodegenerative disorders.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 420
Author(s):  
Myeong Uk Kuk ◽  
Yun Haeng Lee ◽  
Jae Won Kim ◽  
Su Young Hwang ◽  
Joon Tae Park ◽  
...  

Lysosomal storage disease (LSD) is an inherited metabolic disorder caused by enzyme deficiency in lysosomes. Some treatments for LSD can slow progression, but there are no effective treatments to restore the pathological phenotype to normal levels. Lysosomes and mitochondria interact with each other, and this crosstalk plays a role in the maintenance of cellular homeostasis. Deficiency of lysosome enzymes in LSD impairs the turnover of mitochondrial defects, leading to deterioration of the mitochondrial respiratory chain (MRC). Cells with MRC impairment are associated with reduced lysosomal calcium homeostasis, resulting in impaired autophagic and endolysosomal function. This malicious feedback loop between lysosomes and mitochondria exacerbates LSD. In this review, we assess the interactions between mitochondria and lysosomes and propose the mitochondrial–lysosomal axis as a research target to treat LSD. The importance of the mitochondrial–lysosomal axis has been systematically characterized in several studies, suggesting that proper regulation of this axis represents an important investigative guide for the development of therapeutics for LSD. Therefore, studying the mitochondrial–lysosomal axis will not only add knowledge of the essential physiological processes of LSD, but also provide new strategies for treatment of LSD.


2020 ◽  
Vol 295 (39) ◽  
pp. 13556-13569 ◽  
Author(s):  
Amanda R. Luu ◽  
Cara Wong ◽  
Vishal Agrawal ◽  
Nathan Wise ◽  
Britta Handyside ◽  
...  

Mutations in the galactosidase β 1 (GLB1) gene cause lysosomal β-galactosidase (β-Gal) deficiency and clinical onset of the neurodegenerative lysosomal storage disease, GM1 gangliosidosis. β-Gal and neuraminidase 1 (NEU1) form a multienzyme complex in lysosomes along with the molecular chaperone, protective protein cathepsin A (PPCA). NEU1 is deficient in the neurodegenerative lysosomal storage disease sialidosis, and its targeting to and stability in lysosomes strictly depend on PPCA. In contrast, β-Gal only partially depends on PPCA, prompting us to investigate the role that β-Gal plays in the multienzyme complex. Here, we demonstrate that β-Gal negatively regulates NEU1 levels in lysosomes by competitively displacing this labile sialidase from PPCA. Chronic cellular uptake of purified recombinant human β-Gal (rhβ-Gal) or chronic lentiviral-mediated GLB1 overexpression in GM1 gangliosidosis patient fibroblasts coincides with profound secondary NEU1 deficiency. A regimen of intermittent enzyme replacement therapy dosing with rhβ-Gal, followed by enzyme withdrawal, is sufficient to augment β-Gal activity levels in GM1 gangliosidosis patient fibroblasts without promoting NEU1 deficiency. In the absence of β-Gal, NEU1 levels are elevated in the GM1 gangliosidosis mouse brain, which are restored to normal levels following weekly intracerebroventricular dosing with rhβ-Gal. Collectively, our results highlight the need to carefully titrate the dose and dosing frequency of β-Gal augmentation therapy for GM1 gangliosidosis. They further suggest that intermittent intracerebroventricular enzyme replacement therapy dosing with rhβ-Gal is a tunable approach that can safely augment β-Gal levels while maintaining NEU1 at physiological levels in the GM1 gangliosidosis brain.


2020 ◽  
Vol 11 (2) ◽  
pp. 306-314
Author(s):  
Hanon Fukuyo ◽  
Yuji Inoue ◽  
Hidenori Takahashi ◽  
Yu Hatano ◽  
Toko Shibuya ◽  
...  

Galactosialidosis is a rare metabolic disorder resulting from mutations in the CTSA gene. Few studies have reported on the ocular findings of galactosialidosis type IIb in detail. We report on a case of galactosialidosis, the diagnosis of which was suggested by bilateral macular cherry-red spots, which is an indication of lysosomal storage disease. In this case, retinal and systemic dysfunctions were mild. Genetic studies revealed an abnormality of relevant protective proteins, and thus a definitive diagnosis was made. The patient was a 35-year-old man who had blurred vision from young age, but he did not seek any therapy due to good visual acuity. He visited a local clinic after the blurred vision in the left eye worsened and was referred to us for bilateral macular cherry-red spots. He had no family history of note. We observed fine grayish-white deposits in the corneal stroma and fine opacity of the lens. Optical coherence tomography showed a hyperreflective region and a thick bilateral retinal ganglion cell layer. Goldmann perimetry showed focal loss of sensitivity. There was almost no functional decline noted on multifocal electroretinography. Lysosomal storage disease was suspected due to corneal clouding and macular cherry-red spots, and so further evaluation was performed. Though neurological abnormality was mild, we made a diagnosis of galactosialidosis because of decreased activity of β-galactosidase and sialidase. Genetic studies revealed an abnormality of relevant protective proteins. Since the onset was later in life and clinical symptoms were mild, we expect that the ophthalmological findings will remain stable. Long-term observation is necessary for this case.


2020 ◽  
Vol 7 (5) ◽  
pp. 217-221
Author(s):  
Dr. Vijay Baburao Sonawane ◽  
◽  
Dr. V.A. Kotrashetti ◽  
Dr. Kapil S Bainade ◽  
Dr. Amit Vatkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document