Numerical model upgrading of a historical masonry building damaged during the 2016 Italian earthquakes: the case study of the Podestà palace in Montelupone (Italy)

2017 ◽  
Vol 7 (5) ◽  
pp. 703-717 ◽  
Author(s):  
F. Clementi ◽  
A. Pierdicca ◽  
A. Formisano ◽  
F. Catinari ◽  
S. Lenci
2017 ◽  
Vol 747 ◽  
pp. 620-627 ◽  
Author(s):  
Silvia Colonna ◽  
Stefania Imperatore ◽  
Maria Zucconi ◽  
Barbara Ferracuti

The historical masonry buildings are characterised by a great vulnerability regard the seismic action, as the recent events occurred in Central Italy have highlighted. During the seismic emergency the authors, in collaboration with the Civil Protection Department as part of the ReLUIS activities, have carried out usability inspections, analysing also the case study described in this paper. The structure, a school in Teramo, was already affected by previously seismic damages and it has been highly involved by the seismic events abovementioned. In this work the results of first inspection, reported in the AeDES form, and a more accurate visual inspection are presented in terms of detection of the crack patterns and evaluation of the seismic damages index. Moreover the vulnerability index has been calculated according to the GNDT 2° level method. The vulnerability index is finally used to calculate the damage index expected for the seismic intensity registered during the seismic event of October 30, 2016, and compared with the observed post-seismic damage level.


2020 ◽  
Vol 3 (4) ◽  
pp. 289-294
Author(s):  
Embiya Tilki ◽  
Arif Velioğlu ◽  
Barış Sayın

Masonry buildings are ordinarily complex construction systems and there is a lack of knowledge and information concerning the behavior of their seismic response. Due to the life safety of masonry buildings under seismic effects are very essential, numerical modeling and analysis of the buildings are an important issue. Because of the insufficient seismic resistance on structural members such as jack arch slabs and masonry walls, numerical studies have become necessary to determine the level of the structural strength of the structures. The tensile strength of load-bearing walls in the buildings is lower whereas, the compressive strength is higher. In this way, tensile cracks occur at structural members due to insufficient tensile resistance. Therefore, the tensile stress locations in the structure are critical. The study focuses on the assessment of historical masonry buildings from the point of seismic resistance. The entire process is performed using a case study from a historical masonry building. In this study conducted in this respect, the existing situation of a historical building using numerical analyses were presented with the cross-disciplinary study of civil engineering and architecture. The linear elastic analysis is selected as an analysis method. The seismic parameters are determined based on the Turkish Earthquake Code (TBEC 2018). Consequently, the study is performed to determine the seismic-resistant of historical buildings within the scope of numerical analyses.


2020 ◽  
Vol 10 (19) ◽  
pp. 6687
Author(s):  
Simona Di Nino ◽  
Daniele Zulli

With the aim of evaluating local and global dynamic mechanisms of a vast and historical masonry building, a homogeneous structural model is proposed here. It is realized with the assembly of othotropic plates and Timoshenko and pure shear beams as well. The identification of the constitutive parameters is carried out after realizing refined finite element models of building portions, and imposing energy or displacement equivalence with the corresponding homogeneous versions, depending on the complexity of the involved schemes. The outcomes are compared with those provided by experimental investigations, and help to give insight and interpretation on the dynamic behavior of the building.


2017 ◽  
Vol 55 (8) ◽  
pp. 668-673
Author(s):  
T. Kitamura ◽  
K. Tohkai ◽  
F. Kawagishi ◽  
M. Onishi

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Nisar Ali Khan ◽  
Giorgio Monti ◽  
Camillo Nuti ◽  
Marco Vailati

Infilled reinforced concrete (IRC) frames are a very common construction typology, not only in developing countries such as Pakistan but also in southern Europe and Western countries, due to their ease of construction and less technical skills required for the construction. Their performance during past earthquakes has been in some cases satisfactory and in other cases inadequate. Significant effort has been made among researchers to improve such performance, but few have highlighted the influence of construction materials used in the infill walls. In some building codes, infills are still considered as non-structural elements, both in the design of new buildings and, sometimes, in the assessment of existing buildings. This is mainly due to some difficulties in modeling their mechanical behavior and also the large variety of typologies, which are difficult to categorize. Some building codes, for example, Eurocode, already address the influence of infill walls in design, but there is still a lack of homogeneity among different codes. For example, the Pakistan building code (PBC) does not address infills, despite being a common construction technique in the country. Past earthquake survey records show that construction materials and infill types significantly affect the seismic response of buildings, thus highlighting the importance of investigating such parameters. This is the object of this work, where a numerical model for infill walls is introduced, which aims at predicting their failure mode, as a function of some essential parameters, such as the friction coefficient between mortar and brick surface and mortar strength, usually disregarded in previous models. A comprehensive case study is presented of a three-story IRC frame located in the city of Mirpur, Pakistan, hit by an earthquake of magnitude 5.9 on 24 September 2019. The results obtained from the numerical model show good agreement with the damage patterns observed in situ, thus highlighting the importance of correctly modeling the infill walls when seismically designing or assessing Pakistani buildings that make use of this technology.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1288
Author(s):  
Husam Musa Baalousha ◽  
Bassam Tawabini ◽  
Thomas D. Seers

Vulnerability maps are useful for groundwater protection, water resources development, and land use management. The literature contains various approaches for intrinsic vulnerability assessment, and they mainly depend on hydrogeological settings and anthropogenic impacts. Most methods assign certain ratings and weights to each contributing factor to groundwater vulnerability. Fuzzy logic (FL) is an alternative artificial intelligence tool for overlay analysis, where spatial properties are fuzzified. Unlike the specific rating used in the weighted overlay-based vulnerability mapping methods, FL allows more flexibility through assigning a degree of contribution without specific boundaries for various classes. This study compares the results of DRASTIC vulnerability approach with the FL approach, applying both on Qatar aquifers. The comparison was checked and validated against a numerical model developed for the same study area, and the actual anthropogenic contamination load. Results show some similarities and differences between both approaches. While the coastal areas fall in the same category of high vulnerability in both cases, the FL approach shows greater variability than the DRASTIC approach and better matches with model results and contamination load. FL is probably better suited for vulnerability assessment than the weighted overlay methods.


Sign in / Sign up

Export Citation Format

Share Document