scholarly journals Decreased MEG beta oscillations in HIV-infected older adults during the resting state

2013 ◽  
Vol 19 (6) ◽  
pp. 586-594 ◽  
Author(s):  
Katherine M. Becker ◽  
Elizabeth Heinrichs-Graham ◽  
Howard S. Fox ◽  
Kevin R. Robertson ◽  
Uriel Sandkovsky ◽  
...  
2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Robert G. Lyday ◽  
Jonathan H. Burdette ◽  
Laura D. Baker ◽  
...  

Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the community structure of the default mode network (DMN), sensorimotor network (SMN), and the dorsal attention network (DAN) across the study population. The DMN and SMN exhibited a task-driven decline in consistency across the group when comparing the MI task to the resting state. The DAN, however, displayed an increase in consistency during the MI task. To our knowledge, this is the first study to use graph theory and network community structure to characterize the effects of a MI task, such as the MAT-sf, on overall brain network organization in older adults.


2021 ◽  
Vol 13 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Jean-Philippe Antonietti ◽  
Pamela Banta Lavenex ◽  
...  

During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20–30 years) and older (65–75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults.


2018 ◽  
Vol 2 (suppl_1) ◽  
pp. 402-402
Author(s):  
J Zhou ◽  
O Lo ◽  
M Halko ◽  
R Harrison ◽  
L Lipsitz ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Chemin Lin ◽  
Maria Ly ◽  
Helmet T. Karim ◽  
Wenjing Wei ◽  
Beth E. Snitz ◽  
...  

Abstract Background Pathological processes contributing to Alzheimer’s disease begin decades prior to the onset of clinical symptoms. There is significant variation in cognitive changes in the presence of pathology, functional connectivity may be a marker of compensation to amyloid; however, this is not well understood. Methods We recruited 64 cognitively normal older adults who underwent neuropsychological testing and biannual magnetic resonance imaging (MRI), amyloid imaging with Pittsburgh compound B (PiB)-PET, and glucose metabolism (FDG)-PET imaging for up to 6 years. Resting-state MRI was used to estimate connectivity of seven canonical neural networks using template-based rotation. Using voxel-wise paired t-tests, we identified neural networks that displayed significant changes in connectivity across time. We investigated associations among amyloid and longitudinal changes in connectivity and cognitive function by domains. Results Left middle frontal gyrus connectivity within the memory encoding network increased over time, but the rate of change was lower with greater amyloid. This was no longer significant in an analysis where we limited the sample to only those with two time points. We found limited decline in cognitive domains overall. Greater functional connectivity was associated with better attention/processing speed and executive function (independent of time) in those with lower amyloid but was associated with worse function with greater amyloid. Conclusions Increased functional connectivity serves to preserve cognitive function in normal aging and may fail in the presence of pathology consistent with compensatory models.


NeuroImage ◽  
2019 ◽  
Vol 201 ◽  
pp. 116037 ◽  
Author(s):  
Alba Xifra-Porxas ◽  
Guiomar Niso ◽  
Sara Larivière ◽  
Michalis Kassinopoulos ◽  
Sylvain Baillet ◽  
...  

2016 ◽  
Vol 17 (4) ◽  
pp. S59
Author(s):  
S. Atalla ◽  
J. Gore ◽  
S. Bruehl ◽  
B. Rogers ◽  
M. Dietrich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document