Influence of Stainless Steel Wire Reinforcement on the Impact Resistance of GFRP Composite Laminates

2015 ◽  
Vol 40 (4) ◽  
pp. 1111-1122 ◽  
Author(s):  
K. Pazhanivel ◽  
G. B. Bhaskar ◽  
A. Elayaperumal ◽  
P. Anandan ◽  
S. Arunachalam
2016 ◽  
Vol 39 (3) ◽  
pp. 889-899 ◽  
Author(s):  
K PAZHANIVEL ◽  
G B BHASKAR ◽  
A ELAYAPERUMAL ◽  
P ANANDAN ◽  
S ARUNACHALAM

1991 ◽  
Vol 49 (10) ◽  
pp. 1074-1078
Author(s):  
Richard H. Haug ◽  
Jon P. Bradrick ◽  
Marilyn Su

2013 ◽  
Vol 746 ◽  
pp. 394-399
Author(s):  
Niwat Anuwongnukroh ◽  
Yosdhorn Chuankrerkkul ◽  
Surachai Dechkunakorn ◽  
Pornkiat Churnjitapirom ◽  
Theeralaksna Suddhasthira

The archwire is generally used in fixed appliances for orthodontic treatment to correct dental malocclusion. However, it is interesting to know whether general purpose stainless steel wire could replace commercial orthodontic archwire in orthodontic practice for economic reasons. The purpose of this study was to determine the bending properties of general purpose stainless steel wire compared with commercial orthodontic stainless steel wires after forming as an archwire for orthodontic use. The samples used in this study were 90 general purpose and 45 commercial (Highland) round stainless steel wires in 0.016, 0.018, and 0.020 sizes (30 general purpose and 15 commercial wires for each size). All 15 general purpose stainless steel wires with different sizes were formed into orthodontic archwire with a Universal Testing Machine. All samples were tested (three-point bending test) for mechanical properties. The results showed no significant difference between general purpose and commercial orthodontic wires in size 0.016 for 0.1 mm offset bending force, 0.2% yield strength, and springback. Although many mechanical properties of general purpose wires differed from commercial wires, their values conformed to other previous studies within the range of clinical acceptance. In conclusion, orthodontic formed general purpose round stainless steel wires had statistically different (p <0.05) mechanical properties from commercial orthodontic stainless steel wires (Highland) but the mechanical properties were acceptable to use in orthodontic treatment.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2000 ◽  
Vol 3 (3) ◽  
pp. 97-98 ◽  
Author(s):  
R.S. de Biasi ◽  
A.C.O. Ruela ◽  
C.N. Elias ◽  
O. Chevitarese

Sign in / Sign up

Export Citation Format

Share Document