Identification of Catenary Performance Degradation Based on Gath Geva Clustering and Improved Support Vector Date Description

Author(s):  
Lingzhi Yi ◽  
Tao Sun ◽  
Jian Zhao ◽  
Xiu Xu ◽  
Ganlin Jiang ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 660 ◽  
Author(s):  
Fang Liu ◽  
Liubin Li ◽  
Yongbin Liu ◽  
Zheng Cao ◽  
Hui Yang ◽  
...  

In real industrial applications, bearings in pairs or even more are often mounted on the same shaft. So the collected vibration signal is actually a mixed signal from multiple bearings. In this study, a method based on Hybrid Kernel Function-Support Vector Regression (HKF–SVR) whose parameters are optimized by Krill Herd (KH) algorithm was introduced for bearing performance degradation prediction in this situation. First, multi-domain statistical features are extracted from the bearing vibration signals and then fused into sensitive features using Kernel Joint Approximate Diagonalization of Eigen-matrices (KJADE) algorithm which is developed recently by our group. Due to the nonlinear mapping capability of the kernel method and the blind source separation ability of the JADE algorithm, the KJADE could extract latent source features that accurately reflecting the performance degradation from the mixed vibration signal. Then, the between-class and within-class scatters (SS) of the health-stage data sample and the current monitored data sample is calculated as the performance degradation index. Second, the parameters of the HKF–SVR are optimized by the KH (Krill Herd) algorithm to obtain the optimal performance degradation prediction model. Finally, the performance degradation trend of the bearing is predicted using the optimized HKF–SVR. Compared with the traditional methods of Back Propagation Neural Network (BPNN), Extreme Learning Machine (ELM) and traditional SVR, the results show that the proposed method has a better performance. The proposed method has a good application prospect in life prediction of coaxial bearings.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3854 ◽  
Author(s):  
Chuanqi Lu ◽  
Shaoping Wang

Performance degradation prediction plays a key role in realizing aviation pump health management and condition-based maintenance. Thus, this paper proposes a new approach that combines a Gaussian mixture model (GMM) and optimized support vector regression (SVR) to predict aviation pumps’ degradation processes based on the pump outlet pressure signals. Different from other feature extraction methods in which the information of intrinsic mode functions (IMFs) is not fully utilized, some useful IMF components are firstly chosen, and the corresponding multi-domain features are extracted from each selected component. Considering that it is not the case that all features are equally sensitive to degradation assessment, PCA is used to select more sensitive degradation features. Since the distribution of these extracted features is a stochastic process in feature space, meanwhile, self-information quantity can describe the uncertainty of system by measuring the average information quantity contained in the probability distribution, self-information quantity based on GMM is defined as degradation index (DI) to describe the degradation degree of the pump quantitatively. Finally, an SVR model is constructed to predict the degradation status of the pump. To achieve higher prediction accuracy, phase space reconstruction theory is first employed to determine the number of the inputs of the SVR model, then a new method combining particle swarm optimization (PSO) with grid search (GS) is developed to optimize the parameters of the SVR model. Finally, both the online data and historical data are utilized for the construction of the SVR model, respectively. The effectiveness of the proposed approach is validated by full life cycle data collected from an aviation pump test rig. The results demonstrate that the DI extracted from pump outlet pressure signals can effectively identify and track the current deterioration stage, and the established SVR model has better prediction ability when compared with previously published methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jianmin Zhou ◽  
Huijuan Guo ◽  
Long Zhang ◽  
Qingyao Xu ◽  
Hui Li

Bearing performance degradation assessment is of great significance for proactive maintenance and near-zero downtime. For this purpose, a novel assessment method is proposed based on lifting wavelet packet symbolic entropy (LWPSE) and support vector data description (SVDD). LWPSE is presented for feature extraction by jointing use of lifting wavelet packet transform and symbolic entropy. Firstly, the LWPSEs of bearing signals from normal bearing condition are extracted to train an SVDD model by fitting a tight hypersphere around normal samples. Then, the relative distance from the LWPSEs of testing signals to the hypersphere boundary is calculated as a quantitative index for bearing performance degradation assessment. The feasibility and efficiency of the proposed method were validated by the life-cycle data obtained from NASA’s prognostics data repository and the comparison with Hidden Markov Model (HMM). Finally, the assessment results were verified by the envelope spectrum analysis method based on empirical mode decomposition and Hilbert envelope demodulation.


Author(s):  
Yao Zhang ◽  
Youguang Zhou ◽  
Gang Tang ◽  
Huaqing Wang

The prediction of performance degradation is significant for the health monitoring of rolling bearing, which helps to greatly reduce the loss caused by potential faults in the entire life cycle of rotating machinery. As a new method of machine learning based on statistical learning theory, least squares support vector machine is developed and has achieved good results. However, it lacks the description of the time-sum effect and delay characteristics, which cannot fully describe the performance degradation process. To overcome the problem, a new time shift least squares support vector machine with integral operator is proposed. What is more, multivariable prediction model is introduced to describe the process from multiple perspectives. In this model, different features are extracted to construct sample pairs through a moving window. Then these features are decomposed in time domain using a set of orthogonal basis functions to simplify computation. Furthermore, the model adaptability is also improved through an iterative updating strategy. Bearing fault experiments show that the proposed model outperforms the general method.


Sign in / Sign up

Export Citation Format

Share Document