Study on Failure Analysis of Gas Lift Plunger Under Eccentric State

Author(s):  
Lu Cui ◽  
Ke Tian ◽  
Jiarui Cheng ◽  
Zhen Li
Keyword(s):  
2021 ◽  
Author(s):  
Suman Kumar ◽  
Mohamad Sazwan Ismail ◽  
Nurfarah Izwana Salleh ◽  
Amirul Adha Amsidom ◽  
M Haziq M Ghazali ◽  
...  

Abstract There are five wells planned to be drilled in B field infill campaign starting Q3 2020 - Q1 2021 as per development plan. Two wells are planned to be installed with Digital Intelligent Artificial Lift (DIAL) system, which one in single string completion and another one in dual string completion. This paper will mainly describe on the DIAL application in dual strings completion in B field. The DIAL system has circumferential 3 active orifice valves to open/ close selectively or in combination, which is communicated and operated through TEC cable from surface remotely. Given that this will be the second DIAL system installation in the world, a back up gas lift mandrel (GLM) will be installed to mitigate the risk in case the DIAL system fails to work due to any unprecedented reason so that conventional gas lift valve can be installed in GLM and gas lift operations can be commensed. The world's first DIAL installation in dual strings was completed in a different field offshore Malaysia in Q2 2020. During well completion and system installation, all the DIAL units in short string were functioning well, however there were some issues initially observed in Continuity Resistance (CR) inconsistent reading during run in hole completion and then total failure was observed in long string after its installation based on CR test, TDR (Time Domain Refractometer) test, and Scope Test due to unprecedented technical issue which affected the downhole cable to receive and send electrical signal to operate DIAL valves. The risk assessment has been conducted with associated parties based on the failure analysis and lessons learnt from the first DIAL application in dual strings in order to implement mitigation plan and proceed with DIAL application in B field. This step is very crucial to build the learning curves as well as improve the operator's understanding on for future DIAL application in dual strings. This paper will summarize the DIAL tool functionality and its design, failure analysis & lessons learnt from other field offshore Malaysia, and risk assessment & mitigation plan carried out for the DIAL application in dual strings in B field. It marks the second application in the world at present & first successful DIAL application in dual strings worldwide presently.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


1982 ◽  
Author(s):  
J. CAMPBELL ◽  
R. BECHTEL ◽  
J. BROPHY
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document