Valorization of mangaba residue (Hancornia speciosa Gomes) for polygalacturonase production from Aspergillus niger IOC 4003 and fabrication of active chitosan films

Author(s):  
Millena Cristiane de Medeiros Bezerra Jácome ◽  
Carlos Eduardo de Araújo Padilha ◽  
Murilo Ricardo do Nascimento Arrais ◽  
Ana Laura Oliveira de Sá Leitão ◽  
Francisco Canindé de Sousa Júnior ◽  
...  
2018 ◽  
Vol 81 (1) ◽  
Author(s):  
Halifah Pagarra ◽  
Roshanida A. Rahman ◽  
Nur Izyan Wan Azelee ◽  
Rosli Md Illias

Polygalacturonases represent an important member of pectinases group of enzymes with immense industrial applications. The activity of exo-polygalacturonase produced by Aspergillus niger was studied in solid state fermentation (SSF) using Nephrolepis biserrata leaves as substrate. Central composite design (CCD) was used to optimize four significant variables resulted from the screening process that has been initially analyzed for the production of exo-polygalacturonase which are incubation time, temperature, concentration of pectin and moisture content. The optimum exo-polygalacturonase production obtained was 54.64 U/g at 120 hours of incubation time, temperature at 340C, 5.0 g/L of pectin concentration and 75.26% of moisture content. For partial characterization of exo-polygalacturonase, the optimum temperature and pH were obtained at 50°C and pH 4.0, respectively. SDS-PAGE analysis showed that molecular weight of exo-polygalacturonase were 35 and 71 kDa. This study has revealed a significant production of exo-polygalacturonase by A. niger under SSF using cheap and easily available substrate and thus could found immense potential application in industrial sectors and biotechnology


2007 ◽  
Vol 50 (5) ◽  
pp. 759-766 ◽  
Author(s):  
Jorge Alberto Vieira Costa ◽  
Eliane Colla ◽  
Glênio Magagnin ◽  
Lucielen Oliveria dos Santos ◽  
Mauricio Vendruscolo ◽  
...  

Amyloglucosidase (AMG) and exo-polygalacturonase (exo-PG) were simultaneously produced by two different strains of Aspergillus niger in solid-state fermentation (SSF) using defatted rice-bran as substrate. The effect of Aspergillus niger strain (t0005/007-2 and/or CCT 3312), inoculum type (spore suspension or fermented bran) and addition of inducers (pectin and/or starch) to the culture media was studied using a 3² x 2¹ factorial experimental design. The production of AMG and exo-PG was significantly affected by fungal strain and inoculum type but inducers had no effect. The maximum yields obtained were 1310 U/g dm for AMG using a spore suspension of A. niger CCT 3312 and 50.2 U/g dm for exo-PG production, using A. niger t0005/007-2 and fermented bran as inoculum. The yields obtained represented acceptable values in comparison with data available in the literature and indicated that defatted rice-bran was a good nutrient source.


2019 ◽  
Vol 42 ◽  
pp. e44498
Author(s):  
Fernanda Martins de Souza ◽  
Cleide Mara Faria Soares ◽  
Alvaro Silva Lima ◽  
Luciana Cristina Lins de Aquino Santana

In this work, a “green” Aspergillus niger lipase obtained from the solid-state fermentation of Hancornia speciosa (“mangaba”) seeds was efficiently immobilised on polyethersulfone membranes (PES) by physical adsorption (PES-ADS-lipase) and covalent bonding (PES-COV-lipase) (immobilisation yields of 92 and 81%, respectively). The free lipase showed an optimum pH close to neutrality, while the biocatalysts displaced the pH to the alkaline region (optimum pH 9.0 and 11.0 for PES-ADS-lipase and PES-COV-lipase, respectively). The optimum temperature of free lipase was 55°C; however, a higher thermal stability occurred at 37°C. The PES-ADS-lipase and PES-COV-lipase showed lower optimum temperatures (37 and 45°C, respectively) but higher thermal stabilities at 45 and 55°C, respectively. The lower thermal inactivation constant and higher half-life of PES-COV-lipase at 55°C confirmed the efficiency of covalent bonding in maintaining the thermal stability of the enzyme. The Michaelis–Menten constant (Km) and maximum rate of reaction (Vmax) were also determined, and the biocatalysts showed higher affinities to substrates (lower Km values) than free lipase. In this work, the biocatalysts showed good catalytic properties with future potential applications in hydrolysis reactions. The use of a “green” lipase obtained from agroindustrial residue makes this product economically attractive from an industrial point of view.


Sign in / Sign up

Export Citation Format

Share Document