scholarly journals Correction to: Optimisation on pretreatment of kapok seed (Ceiba pentandra) oil via esterification reaction in an ultrasonic cavitation reactor

Author(s):  
Lai Fatt Chuah ◽  
Awais Bokhari ◽  
Suzana Yusup ◽  
Jiří Jaromír Klemeš ◽  
Majid Majeed Akbar ◽  
...  
2016 ◽  
Vol 7 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Lai Fatt Chuah ◽  
Awais Bokhari ◽  
Suzana Yusup ◽  
Jiří Jaromír Klemeš ◽  
Majid Majeed Akbar ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 156-166
Author(s):  
Ratna Dewi Kusumaningtyas ◽  
Muhammad Hafizt Akbar ◽  
Dwi Widjanarko

The rapid growth of the population and economy has boosted up the necessity of fuel and  energy source. Until now, the world’s dependency on fossil fuel as the primary energy supply is still high. On the other hand, it has been known that the fossil-based oil and gas reserves are shrunk. Hence, it is urgent to develop alternative energy sources, which are renewable and environmentally friendly, to anticipate the energy insufficiency. Biodiesel is among the prospective renewable energy due to its advantages. Biodiesel (fatty acid methyl esters) is a type of biofuel which is derived from vegetable oil or animal fat. There are various vegetable oils that can be used as raw material for biodiesel production. However, non-edible oils are usually preferred to be selected as a biodiesel feedstock to evade the conflict between food and energy needs. Kapok Randu (Ceiba pentandra) seed oil is a type of non-edible oil which is cheap and can be employed as biodiesel feedstock. However, this oil has high free fatty acid (FFA) content (8.89%). Thus, it cannot directly undergo transesterification reaction to produce biodiesel since the FFA will react with alkaline catalyst to produce soap. The FFA content in Kapok Randu seed oil needs to be decreased until it is lower than 2%. Hence, prior to transesterification reaction, esterification of Kapok Randu seed oil with methanol in the presence of acid catalyst should be conducted to decrease the FFA content. In this work, esterification reaction was performed in the presence of sulfuric acid catalyst. The reactions were conducted at the molar ratio of oil to methanol of 1:12 at the temperature of 40, 50, and 60 ℃ for 120 minutes. The optimum reaction conversion was 95.14%, achieved at the reaction temperature of 60 ℃. Kinetics study using homogeneous models was also performed. It was revealed that the reaction was appropriate with the irreversible second order reaction model. The reaction rate constant (k), activation energy (Ea), and  frequency factor (A) were 4.95 L / mole.min, 30,799.21 J/ mole and 338.744 / min, respectively.


1977 ◽  
Vol 38 (03) ◽  
pp. 0640-0651 ◽  
Author(s):  
B. V Chater ◽  
A. R Williams

SummaryPlatelets were found to aggregate spontaneously when exposed to ultrasound generated by a commercial therapeutic device. At a given frequency, aggregation was found to be a dose-related phenomenon, increasing intensities of ultrasound inducing more extensive and more rapid aggregation. At any single intensity, the extent aggregation was increased as the frequency of the applied ultrasound was decreased (from 3.0 to 0.75 MHz).Ultrasound-induced platelet aggregation was found to be related to overall platelet sensitivity to adenosine diphosphate. More sensitive platelets were found to aggregate spontaneously at lower intensities of sound, and also the maximum extent of aggregation was found to be greater. Examination of ultrasound-induced platelet aggregates by electron microscopy demonstrated that the platelets had undergone the release reaction.The observation that haemoglobin was released from erythrocytes in whole blood irradiated under identical physical conditions suggests that the platelets are being distrupted by ultrasonic cavitation (violent gas/bubble oscillation).It is postulated that overall platelet aggregation is the result of two distinct effects. Firstly, the direct action of ultrasonic cavitation disrupts a small proportion of the platelet population, resulting in the liberation of active substances. These substances produce aggregation, both directly and indirectly by inducing the physiological release reaction in adjacent undamaged platelets.


2014 ◽  
Author(s):  
Maksym Prystupiuk ◽  
Iuliia Onofriichuk ◽  
Liudmyla Naumova ◽  
Lev Prystupiuk ◽  
Marianna Naumova ◽  
...  

2019 ◽  
Vol 1 (3) ◽  
pp. 68
Author(s):  
Puguh Setyopratomo ◽  
Edy Purwanto ◽  
H. Yefrico ◽  
H. Yefrico

The synthesis of glycerol mono oleic from oleic acid and glycerol is classified as an esterification reaction. This research is aimed to study the influent of reaction temperature and catalyst concentration on reaction conversion. During the experiment the temperature of reaction mixture was varied as 110 oC, 130 oC, and 150 oC, while the catalyst concentration of 1%, 3 %, and 5% was used. The batch experiment was conducted in a glass reactor equipped with termometer, agitator, and reflux condensor. The oleic acid – glycerol mol ratio of 1 : 2 was used as a mixture feed. To maintain the reaction temperature at certain level, the oil bath was used. After the temperature of reaction mixture was reached the expected value, then H2SO4 catalyst was added to the reactor.  To measure the extent of the reaction, every 30 minutes the sample was drawn out from the reactor vessel. The sample analysis include acid number, density, and viscosity measurement. From this research the optimum condition which is the temperature of reaction of 150 oC and 1% catalyst concentration was obtained. At this optimum condition the convertion reach 86% and the analysis of other physical properties of the product show the acid number of 24.12, the density of 0.922 g/cc, and the viscosity of 118.4 cp.


Author(s):  
A. Osterman ◽  
O. Coutier-Delgosha ◽  
M. Hocevar ◽  
B. Sirok

2020 ◽  
Vol 38 (5A) ◽  
pp. 779-788
Author(s):  
Marwa N. Kareem ◽  
Adel M. Salih

In this study, the sunflowers oil was utilized as for producing biodiesel via a chemical operation, which is called trans-esterification reaction. Iraqi diesel fuel suffers from high sulfur content, which makes it one of the worst fuels in the world. This study is an attempt to improve the fuel specifications by reducing the sulfur content of the addition of biodiesel fuel to diesel where this fuel is free of sulfur and has a thermal energy that approaches to diesel.20%, 30% and 50% of Biodiesel fuel were added to the conventional diesel. Performance tests and pollutants of a four-stroke single-cylinder diesel engine were performed. The results indicated that the brake thermal efficiency a decreased by (4%, 16%, and 22%) for the B20, B30 and B50, respectively. The increase in specific fuel consumption was (60%, 33%, and 11%) for the B50, B30, and B20 fuels, respectively for the used fuel blends compared to neat diesel fuel. The engine exhaust gas emissions measures manifested a decreased of CO and HC were CO decreased by (13%), (39%) and (52%), and the HC emissions were lower by (6.3%), (32%), and (46%) for B20, B30 and B50 respectively, compared to diesel fuel. The reduction of exhaust gas temperature was (7%), (14%), and (32%) for B20, B30 and B50 respectively. The NOx emission increased with the increase in biodiesel blends ratio. For B50, the raise was (29.5%) in comparison with diesel fuel while for B30 and B20, the raise in the emissions of NOx was (18%) and...


Sign in / Sign up

Export Citation Format

Share Document