Assessment of the ability of Meyerozyma guilliermondii P14 to produce second-generation bioethanol from giant reed (Arundo donax) biomass

Author(s):  
Arushdeep Sidana ◽  
Sundeep Kaur ◽  
Sudesh Kumar Yadav
Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1591
Author(s):  
Isabella De Bari ◽  
Federico Liuzzi ◽  
Alfredo Ambrico ◽  
Mario Trupo

Biomass-derived sugars are platform molecules that can be converted into a variety of final products. Non-food, lignocellulosic feedstocks, such as agroforest residues and low inputs, high yield crops, are attractive bioresources for the production of second-generation sugars. Biorefining schemes based on the use of versatile technologies that operate at mild conditions contribute to the sustainability of the bio-based products. The present work describes the conversion of giant reed (Arundo donax), a non-food crop, to ethanol and furfural (FA). A sulphuric-acid-catalyzed steam explosion was used for the biomass pretreatment and fractionation. A hybrid process was optimized for the hydrolysis and fermentation (HSSF) of C6 sugars at high gravity conditions consisting of a biomass pre-liquefaction followed by simultaneous saccharification and fermentation with a step-wise temperature program and multiple inoculations. Hemicellulose derived xylose was dehydrated to furfural on the solid acid catalyst in biphasic media irradiated by microwave energy. The results indicate that the optimized HSSF process produced ethanol titers in the range 43–51 g/L depending on the enzymatic dosage, about 13–21 g/L higher than unoptimized conditions. An optimal liquefaction time before saccharification and fermentation tests (SSF) was 10 h by using 34 filter paper unit (FPU)/g glucan of Cellic® CTec3. C5 streams yielded 33.5% FA of the theoretical value after 10 min of microwave heating at 157 °C and a catalyst concentration of 14 meq per g of xylose.


2018 ◽  
Vol 148 ◽  
pp. 728-735 ◽  
Author(s):  
Sebastian Brusca ◽  
Salvatore Luciano Cosentino ◽  
Fabio Famoso ◽  
Rosario Lanzafame ◽  
Stefano Mauro ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 79 ◽  
Author(s):  
Nicola Di Fidio ◽  
Anna Maria Raspolli Galletti ◽  
Sara Fulignati ◽  
Domenico Licursi ◽  
Federico Liuzzi ◽  
...  

Lignocellulosic biomass represents one of the most important feedstocks for future biorefineries, being a precursor of valuable bio-products, obtainable through both chemical and biological conversion routes. Lignocellulosic biomass has a complex matrix, which requires the careful development of multi-step approaches for its complete exploitation to value-added compounds. Based on this perspective, the present work focuses on the valorization of hemicellulose and cellulose fractionsof giant reed (Arundo donax L.) to give second-generation sugars, minimizing the formation of reaction by-products. The conversion of hemicellulose to xylose was undertaken in the presence of the heterogeneous acid catalyst Amberlyst-70 under microwave irradiation. The effect of the main reaction parameters, such as temperature, reaction time, catalyst, and biomass loadings on sugars yield was studied, developing a high gravity approach. Under the optimised reaction conditions (17 wt% Arundo donax L. loading, 160 °C, Amberlyst-70/Arundo donax L. weight ratio 0.2 wt/wt), the xylose yield was 96.3 mol%. In the second step, the cellulose-rich solid residue was exploited through the chemical or enzymatic route, obtaining glucose yields of 32.5 and 56.2 mol%, respectively. This work proves the efficiency of this innovative combination of chemical and biological catalytic approaches, for the selective conversion of hemicellulose and cellulose fractions of Arundo donax L. to versatile platform products.


2015 ◽  
Vol 18 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Claudia Fernanda Lemons e Silva ◽  
Manoel Artigas Schirmer ◽  
Roberto Nobuyuki Maeda ◽  
Carolina Araújo Barcelos ◽  
Nei Pereira

2016 ◽  
Vol 219 ◽  
pp. 589-599 ◽  
Author(s):  
Amalia Zucaro ◽  
Annachiara Forte ◽  
Riccardo Basosi ◽  
Massimo Fagnano ◽  
Angelo Fierro

Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 588
Author(s):  
Charles A. Braman ◽  
Adam M. Lambert ◽  
A. Zeynep Özsoy ◽  
Ellen N. Hollstien ◽  
Kirsten A. Sheehy ◽  
...  

Arundo donax (giant reed) is invasive in Mediterranean, sub-, and tropical riparian systems worldwide. The armored scale Rhizaspidiotus donacis is approved for biocontrol in North America, but an adventive population was recently discovered in southern California. We documented this population’s distribution, phylogeny, phenology, potential host spillover to Phragmites spp., and potential for parasitism by a common biocontrol parasitoid of citrus scale. The adventive scale was found within a single watershed and is genetically closest to Iberian scale genotypes. Rhizaspidiotus donacis developed on Phragmites haplotypes but at much lower densities than Arundo. The adventive population is univoltine, producing crawlers from March-June. Aphytis melinus parasitoids exhibited sustained interest in R. donacis during choice and no-choice trials and oviposition resulted in a small second generation. Rhizaspidiotus donacis appears limited in distribution by its univoltinism and sessile adult females. This presents challenges for broad biocontrol implementation but allows for targeted application. The genetic differentiation between imported biocontrol samples and adventive populations presents an opportunity for exploring benefits of hybrids and/or alternative genotypes where establishment has been difficult. While unlikely to occur in situ, spillover to vulnerable endemic Phragmites or deleterious parasitoid effects on scale biocontrol agents warrants consideration when planning use of R. donacis.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1333
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Mariano Crimaldi ◽  
Vittorio Pasquino ◽  
Roberta Padulano ◽  
Giovanni Battista Chirico

Estimating the main hydrodynamic features of real vegetated water bodies is crucial to assure a balance between their hydraulic conveyance and environmental quality. Riparian vegetation stands have a high impact on vegetated channels. The present work has the aim to integrate riparian vegetation’s reflectance indices and hydrodynamics of real vegetated water flows to assess the impact of riparian vegetation morphometry on bulk drag coefficients distribution along an abandoned vegetated drainage channel fully covered by 9–10 m high Arundo donax (commonly known as giant reed) stands, starting from flow average velocities measurements at 30 cross-sections identified along the channel. A map of riparian vegetation cover was obtained through digital processing of Unnamed Aerial Vehicle (UAV)-acquired multispectral images, which represent a fast way to observe riparian plants’ traits in hardly accessible areas such as vegetated water bodies in natural conditions. In this study, the portion of riparian plants effectively interacting with flow was expressed in terms of ground-based Leaf Area Index measurements (LAI), which easily related to UAV-based Normalized Difference Vegetation Index (NDVI). The comparative analysis between Arundo donax stands NDVI and LAI map enabled the analysis of the impact of UAV-acquired multispectral imagery on bulk drag predictions along the vegetated drainage channel.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gert Vanmarcke ◽  
Mekonnen M. Demeke ◽  
Maria R. Foulquié-Moreno ◽  
Johan M. Thevelein

Abstract Background Presence of inhibitory chemicals in lignocellulose hydrolysates is a major hurdle for production of second-generation bioethanol. Especially cheaper pre-treatment methods that ensure an economical viable production process generate high levels of these inhibitory chemicals. The effect of several of these inhibitors has been extensively studied with non-xylose-fermenting laboratory strains, in synthetic media, and usually as single inhibitors, or with inhibitor concentrations much higher than those found in lignocellulose hydrolysates. However, the relevance of individual inhibitors in inhibitor-rich lignocellulose hydrolysates has remained unclear. Results The relative importance for inhibition of ethanol fermentation by two industrial second-generation yeast strains in five lignocellulose hydrolysates, from bagasse, corn cobs and spruce, has now been investigated by spiking higher concentrations of each compound in a concentration range relevant for industrial hydrolysates. The strongest inhibition was observed with industrially relevant concentrations of furfural causing partial inhibition of both D-glucose and D-xylose consumption. Addition of 3 or 6 g/L furfural strongly reduced the ethanol titer obtained with strain MD4 in all hydrolysates evaluated, in a range of 34 to 51% and of 77 to 86%, respectively. This was followed by 5-hydroxymethylfurfural, acetic acid and formic acid, for which in general, industrially relevant concentrations caused partial inhibition of D-xylose fermentation. On the other hand, spiking with levulinic acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid or vanillin caused little inhibition compared to unspiked hydrolysate. The further evolved MD4 strain generally showed superior performance compared to the previously developed strain GSE16-T18. Conclusion The results highlight the importance of individual inhibitor evaluation in a medium containing a genuine mix of inhibitors as well as the ethanol that is produced by the fermentation. They also highlight the potential of increasing yeast inhibitor tolerance for improving industrial process economics.


Sign in / Sign up

Export Citation Format

Share Document