scholarly journals Potential of giant reed (Arundo donax L.) for second generation ethanol production

2015 ◽  
Vol 18 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Claudia Fernanda Lemons e Silva ◽  
Manoel Artigas Schirmer ◽  
Roberto Nobuyuki Maeda ◽  
Carolina Araújo Barcelos ◽  
Nei Pereira
2018 ◽  
Vol 31 ◽  
pp. 67-74 ◽  
Author(s):  
Juliana Silva Lemões ◽  
Claudia Fernanda Lemons e Silva ◽  
Sabrina Peres Farias Avila ◽  
Cândida Raquel Scherrer Montero ◽  
Sérgio Delmar dos Anjos e Silva ◽  
...  

2015 ◽  
Vol 2 (2) ◽  
pp. 29-39 ◽  
Author(s):  
Egidio Viola ◽  
◽  
Francesco Zimbardi ◽  
Vito Valerio ◽  
Antonio Villone

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 79 ◽  
Author(s):  
Nicola Di Fidio ◽  
Anna Maria Raspolli Galletti ◽  
Sara Fulignati ◽  
Domenico Licursi ◽  
Federico Liuzzi ◽  
...  

Lignocellulosic biomass represents one of the most important feedstocks for future biorefineries, being a precursor of valuable bio-products, obtainable through both chemical and biological conversion routes. Lignocellulosic biomass has a complex matrix, which requires the careful development of multi-step approaches for its complete exploitation to value-added compounds. Based on this perspective, the present work focuses on the valorization of hemicellulose and cellulose fractionsof giant reed (Arundo donax L.) to give second-generation sugars, minimizing the formation of reaction by-products. The conversion of hemicellulose to xylose was undertaken in the presence of the heterogeneous acid catalyst Amberlyst-70 under microwave irradiation. The effect of the main reaction parameters, such as temperature, reaction time, catalyst, and biomass loadings on sugars yield was studied, developing a high gravity approach. Under the optimised reaction conditions (17 wt% Arundo donax L. loading, 160 °C, Amberlyst-70/Arundo donax L. weight ratio 0.2 wt/wt), the xylose yield was 96.3 mol%. In the second step, the cellulose-rich solid residue was exploited through the chemical or enzymatic route, obtaining glucose yields of 32.5 and 56.2 mol%, respectively. This work proves the efficiency of this innovative combination of chemical and biological catalytic approaches, for the selective conversion of hemicellulose and cellulose fractions of Arundo donax L. to versatile platform products.


Author(s):  
Aissata Ousmane Kane ◽  
Vanessa O. Arnoldi Pellergini ◽  
Melissa C. Espirito Santo ◽  
Balla Diop Ngom ◽  
José M. García ◽  
...  

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Marcos Paulo Gabriel da Costa e Silva ◽  
Júlio Cesar de Carvalho Miranda

Abstract This work presents exergy analyses applied in four different conceptual second-generation ethanol production processes through a thermochemical route using catalysts based on Molybdenum (P-1), Copper (P-2), and Rhodium (P-3 and P-4), aiming to assess their exergetic efficiencies. The results show that the conceptual processes have satisfactory exergy efficiencies in both cases, when compared among themselves and when compared with other processes reported in literature. The processes’ efficiency for P-1, P-2, P-3 and P-4 were, respectively, 52.4%, 41.4%, 43.7% and 48.9%. The reactors were the sections in which exergy destruction was more significant, due to the exothermic reactions and mixing points (where streams with different temperatures were mixed). Such results show the potential of thermochemical ethanol production, besides opening the possibilities of process improvement. Graphic abstract


2016 ◽  
Vol 84 ◽  
pp. 176-188 ◽  
Author(s):  
Luigi Pari ◽  
Maria Dolores Curt ◽  
Javier Sánchez ◽  
Enrico Santangelo

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Piergiorgio Gherbin ◽  
Simone Milan ◽  
Giuseppe Mercurio ◽  
Antonio Scopa

The increasing interest in<em> Arundo donax,</em> a perennial lignocellulosic species only reproducing by propagation, requires the setup of cheap, simple and reliable techniques. Considering these targets, stem cutting offers considerable advantages. The present investigation aimed to compare: i) plants obtained by different propagation methods (by rhizome and micropropagation mother plants); ii) plants obtained by stem cuttings from basal, central and apical parts of the stem; iii) different planting periods (spring, summer, autumn). The obtained results showed that the number of new shoots from stem buds was: i) higher in the spring and lower in the summer planting period; ii) higher from cuttings obtained by micropropagated than rhizome mother plants, both in spring and summer plantings; iii) decreasing passing from the basal to the apical stem portion; iv) partly unexpressed in the autumn planting period; v) lower from one-year stem cuttings as compared to two-year stem cuttings.


2018 ◽  
pp. 31-39 ◽  
Author(s):  
Ida Di Mola ◽  
Gianpiero Guida ◽  
Carmela Mistretta ◽  
Pasquale Giorio ◽  
Rossella Albrizio ◽  
...  

The soil salinity increase in the Mediterranean basin is one of the consequences of the climate change. The aim of this study was to evaluate the adaptability of giant reed (Arundo donax L.) to salinity, in conditions of higher temperatures, in order to hypothesise the future use of giant reed under these conditions. The trial was carried out in pots under a permanent metal structure, open on the sides and with a clear PE on the top. Four levels of soil salinity in the range 3.3-15.5 dS m–1 were imposed. The stem number of the most stressed treatment was about 45% lower than the control and also the stem height was lower than in all other treatments. The green and yellow leaf number decreased as the soil salinity increased, and their sum was significantly lower in the two most stressed treatments. Osmotic potential of the leaf sap was not affected by salinity. Leaf water potential and stomatal conduc- conductance in the saline treatments were lower than in the control. tance Assimilation rate showed similar pattern of stomatal conductance. Intrinsic WUE remained almost stable until July and increased during August under the most stressful conditions. PSII photochemistry was not affected by soil salinity. Biomass yield was not different from the control until to soil ECe 12.0 dS m–1: only the most stressed treatment (15.5 dS m–1) caused yield losses (50%). Tolerance threshold to salinity was 11.2 dS m–1 and the relative yield losses were 11.6% per dS m–1.


Sign in / Sign up

Export Citation Format

Share Document