jeffery nanofluid
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jawad Ahmad ◽  
Farhad Ali ◽  
Saqib Murtaza ◽  
Ilyas Khan

This article aims to examine Jeffery nanofluid with joint effects of mass and heat transfer in a horizontal channel. The classical model is transferred to the Caputo fractional model by using the generalized Fourier’s and Fick’s laws. The nanofluids are formed by dispersing two different nanoparticles, silver and copper, into a based fluid. A novel transformation has been applied to the mass and energy equation and then solved by using the sine Fourier and the Laplace transformation jointly. The exact solution is given in terms of a special function, that is, the Mittag-Leffler function. The Sherwood number and Nusselt number are calculated and displayed in the tabular form. The effect of embedded parameters on the velocity, concentration, and temperature profile is discussed graphically. It is noted that the heat transfer rate of EO is improved by 28.24% when the volume fraction of Ag nanoparticles is raised from 0.00 to 0.04.


2021 ◽  
Vol 16 (1) ◽  
pp. 89-96
Author(s):  
Rizwan Akhtar ◽  
Muhammad Awais ◽  
Muhammad Asif Zahoor Raja ◽  
M. N. Abrar ◽  
Sayyar Ali Shah ◽  
...  

This study has been managed for the investigation of entropy generation of inclined magnetic field (MG) on the Jeffery nanofluid flow on a stretching surface containing viscous dissipation. Heat generation or absorption effects are likewise considered on the magnetohydromagnetic flow problem and electric field is considered negligible. The boundary layer approach is incorporated for simplification of the proposed governing equations in which the target of analysis is focused near the surface of the fluidic problem. The concept of dimensionless parameters are used for simplification of the proposed system which overcomes the complexity of the problem. The relaxation and retardation times are also considered for the non-Newtonian Jeffrey fluid model for better analysis of the entropy generation of inclined MG on the Jeffery nanofluid flow on a stretching surface containing viscous dissipation. The strength of analytical homotopy analysis approach is employed for finding the solutions of the proposed fluidic system in terms of energy, momentum and concentration which is effective in the spatial domain. Graphical explanation for flow parameters have been incorporated. The tabular description is given for the convergence analysis and comparison of velocity gradient at the sheet surface f″ (0) for analytical solution (HAM) computed in this manuscript along with the numerical solution. The aim of second law analysis can be achieved by increasing the magnitude of the finite different temperature parameter. The current study is also described for Newtonian fluid as a special case of our study. Stream lines patterns are also provided for both Newtonian and non-Newtonian fluid models.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aneela Bibi ◽  
Hang Xu

A mathematical model is developed to examine the behaviors of a peristalsis flow with nanoparticles in a symmetric channel under the magnetic environment. Here, the nanofluid is electrically conducted through an external magnetic field. Thermal radiation and Joule heating effects are also retained in the present analysis. Under the lubrication approach, the reduced nonlinear systems are obtained. Then, they are solved very efficiently by means of a homotopy analysis method-based package BVPh 2.0. The influences of important physical parameters on the flow behaviors are presented. Analysis of the entropy generation is illustrated. It is found that the Brownian diffusion and the thermophoresis are the two most important nanoparticle slip mechanisms in the Jeffery fluids as well. Besides, the Hartman number, the type of the Jeffery fluid, the Brinkman number, and the thermal radiation parameter play important roles on flow behaviors. Results show that the temperature profile enhanced but the nanoparticles’ volume fraction profiles lowered with increase in the Hartman number. However, using the Jeffery nanofluid induces effect on the velocity distribution that decreases with the increase in the Jeffery fluid parameter. It is also found that the generated total entropy increases with an increase in the Brownian motion parameter but with a decrease in the thermophoresis parameter.


Author(s):  
Pentyala Srinivasa Rao ◽  
Baddela Hari Babu ◽  
S V K Varma

This paper reveals the physical properties of Jeffery nanofluid flow past a moving plate embedded in porous medium under the existence of radiation and thermal diffusion. The analysis is carried out in three cases of moving plate, namely stationary plate λ = 0, forth-moving plate λ = 1, back-moving plate λ = −1. Finite difference method is applied to solve the governing equations of the flow and pointed out the variations in velocity, temperature and concentration with the use of graphical presentations. The impact of several parameters on local skin friction, Nusselt number and Sherwood number is also noticed and discussed. Enhancement of velocity is observed under the impact of Jeffery parameter for the cases of stationary plate and back-moving plate, whereas reverse nature is found in the case of forth-moving plate. The velocity enhances as the values of porosity parameter increases for the case of stationary plate and forth-moving plate but a reverse nature is noticed in the case of back-moving plate.


Sign in / Sign up

Export Citation Format

Share Document