Different day and night temperature responses in Lilium hansonii in relation to growth and flower development

2013 ◽  
Vol 54 (5) ◽  
pp. 405-411 ◽  
Author(s):  
Juniel Galido Lucidos ◽  
Kwang Bok Ryu ◽  
Adnan Younis ◽  
Chang-Kil Kim ◽  
Yoon-Jung Hwang ◽  
...  
1994 ◽  
Vol 42 (2) ◽  
pp. 219 ◽  
Author(s):  
JS Day ◽  
BR Loveys ◽  
D Aspinall

The flowering responses of Boronia megastigma Nees (Rutacae) and Hypocalymma angustifolium Endl. (Myrtaceae) to different photoperiod and temperature regimes were similar despite the fact that these species are from different families. No flowers reached anthesis in a temperature regime of 25°C day/17°C night but flowering of both species occurred in a cool temperatures (17°C day/9°C night). Photoperiod had no effect on flowering at the temperatures tested. Ten weeks of cool temperatures (17°C day/9°C night) were required for a maximum number of flowers to reach anthesis on H. angustifolium plants whereas B. megastigma plants required 15 weeks. Flower development in both species was inhibited by a large difference between day and night temperature (21°C day/5°C night) and promoted if the day/night difference was reversed (9°C day/17°C night). The temperature of the aerial parts of the plant controlled flowering, whereas vegetative growth was controlled by root temperature. Therefore, while a reduction in vegetative growth naturally coincides with the production of flowers, these events are not necessarily linked.


HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1494-1497
Author(s):  
John Erwin ◽  
Rene O’Connell ◽  
Ken Altman

Photoperiod, irradiance, cool temperature (5 °C), and benzyladenine (BA) application effects on Echinopsis ‘Rose Quartz’ flowering were examined. Plants were placed in a 5 °C greenhouse under natural daylight (DL) for 0, 4, 8, or 12 weeks, then moved to a 22/18 °C (day/night temperature) greenhouse under short days (SD, 8-hour DL) plus 0, 25, 45, or 75 μmol·m−2·s−1 supplemental lighting (0800–1600 hr; 8-hour photoperiod), long days (LD) delivered with DL plus night-interruption lighting (NI) (2200–0200 hr), or DL plus 25, 45, or 75 μmol·m−2·s−1 supplemental lighting (0800–0200 hr) for 6 weeks. Plants were then grown under DL only. Percent flowering plants increased as irradiance increased from 0–25 to +75 μmol·m−2·s−1 on uncooled plants, from 0% to 100% as 5 °C exposure increased from 0 to 8 weeks under subsequent SD and from 25% to 100% as 5 °C exposure increased from 0 to 4 weeks under subsequent LD. As 5 °C exposure duration increased from 0 to 12 weeks (SD-grown) and from 0 to 8 weeks (LD-grown), flower number increased from 0 to 11 and from 5 to 21 flowers per plant across irradiance treatments, respectively. Total production time ranged from 123 to 147 days on plants cooled from 8 to 12 weeks (SD-grown) and from 52 to 94 days on plants cooled for 0–4 weeks to 119–153 days on plants cooled for 8–12 weeks (LD-grown). Flower life varied from 1 to 3 days. BA spray application (10–40 mg·L−1) once or twice after a 12-week 5 °C exposure reduced flower number. Flower development was not photoperiodic. High flower number (17–21 flowers/plant) and short production time (including cooling time, 120–122 days) occurred when plants were grown at 5 °C for 8 weeks, then grown under LD + 45–75 μmol·m−2·s−1 for 6 weeks (16 hours; 10.9–12.8 mol·m−2·d−1) at a 22/18 °C day/night temperature. Taken together, Echinopsis ‘Rose Quartz’ exhibited a facultative cool temperature and facultative LD requirement for flowering.


2010 ◽  
Vol 58 (1) ◽  
pp. 61 ◽  
Author(s):  
Robyn L. Cave ◽  
Colin J. Birch ◽  
Graeme L. Hammer ◽  
John E. Erwin ◽  
Margaret E. Johnston

Floral ontogeny of Brunonia australis Sm. ex R.Br. (blue pincushion) and Calandrinia sp. (not yet fully classified) was investigated by scanning electron microscopy to assist further efforts for manipulating flowering of these potential floriculture crops. This is the first work to study floral initiation and the stages of flower development for these species. Floral initiation of B. australis commenced 28 days after seed germination when grown at 25/10 or 35/20°C (day/night) under long days (11 h of ambient light at 553 ± 45 µmol m–2 s–1, plus a 5-h night break at <4.5 µmol m–2 s–1). Leaf number at floral initiation reflected differences in the accumulated thermal time between treatments so that about double the number of leaves formed at 35/20°C. This suggested differing temperature responses for leaf and phenological development, and that leaf number was not a good indicator of floral initiation. For Calandrinia sp., floral initiation commenced 47 days after seed germination when grown at 25/10°C. Hot temperatures (35/20°C) inhibited flowering; indicating a vernalisation requirement. For B. australis, the pattern of floret development was centripetal, with flowers organised into five whorls. Four bracts surrounded each flower, whereas the sepals, petals and stamens showed a pentamerous arrangement. A central style was terminated by an indusial stigmatic presenter. Flowers of Calandrinia sp. consisted of four whorls, namely two sepals, 8–10 petals, numerous stamens produced centrifugally and a central syncarpous gynoecium with four stigmatic branches.


HortScience ◽  
1991 ◽  
Vol 26 (6) ◽  
pp. 720C-720
Author(s):  
Jens J. Brondum ◽  
Royal D. Heins

Dahlia “Royal Dahlietta Yellow” plants were grown in controlled temperature chambers under 25 different day and night temperature environments ranging from 10°C to 30°C. The day length was 12 hours with an average PPF level of 300 micromolm-2 s-1 at canopy level. Leaf unfolding rate, shoot elongation and flower development rate were determined and models developed. Leaf unfolding rate increased as temperature increased up to 25°C. Stem elongation increased as the difference between day and night temperature increased. Flower initiation was delayed at high (30°C) temperature and flower development rate increased as temperature increased from 10°C to 25°C. Plants are currently being grown under greenhouse conditions to provide data for validating the models.


Sign in / Sign up

Export Citation Format

Share Document