Effect of Post-Processing Annealing on Microstructure, Mechanical Behavior and Wear Characteristics of Semisolid Thermomechanically Processed Al–Zn–Mg/3 wt.% Al2O3 Composite

Author(s):  
Mohsen Hajizamani ◽  
Mostafa Alizadeh ◽  
Mostafa Karamouz ◽  
Ali Alizadeh
Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 75
Author(s):  
Carmine Pirozzi ◽  
Stefania Franchitti ◽  
Rosario Borrelli ◽  
Antonio Chiariello ◽  
Luigi Di Palma

In this work a mechanical characterization of Ti6Al4V processed by electron beam powder bed fusion additive manufacturing was carried out to investigate the viability of this technology for the manufacturing of flyable parts for general aviation aircraft. Tests were performed on different manufacturing conditions in order to investigate the effect of post processing as machining on the mechanical behavior. The study provides useful information to airframe designers and manufacturing specialists that work with this technology. The investigation confirms the low process variability and provides data to be used in the design loop of general aviation primary structural elements. The test results show a high level of repeatability indicating that the process is well controlled and reliable enough to match the airworthiness requirements. In addition, the so-called “as-built specimens”, i.e., specimens produced by the electron beam melting machine without any major post-processing, have lower mechanical performances than specimens subjected to a machining phase after the electron beam melting process. Specific primary structural elements will be designed and flight cleared, resulting from the findings presented herein.


Measurement ◽  
2018 ◽  
Vol 127 ◽  
pp. 42-62 ◽  
Author(s):  
Santanu Sardar ◽  
Santanu Kumar Karmakar ◽  
Debdulal Das

2021 ◽  
Vol 52 (4) ◽  
pp. 392-399
Author(s):  
B. Kiran Babu ◽  
A. Jawahar Babu ◽  
G. Ranga Janardhana

Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
William F. Hosford
Keyword(s):  

2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2010 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Tuan Dinh Phan ◽  
Binh Thien Nguyen ◽  
Dien Khanh Le ◽  
Phuong Hoang Pham

The paper presents an application the research results previously done by group on the influence of technological parameters to the deformation angle and finish surface quality in order to choose technology parameters for the incremental sheet forming (ISF) process to produce products for the purpose of rapid prototyping or single-batch production, including all steps from design and process 3D CAD model, calculate and select the technological parameters, setting up manufacturing and the stage of post-processing. The samples formed successfully showed high applicability of this technology to practical work, the complex products with the real size can be produced in industries: automotive, motorcycle, civil...


Sign in / Sign up

Export Citation Format

Share Document