In silico chemical profiling and identification of neuromodulators from Curcuma amada targeting acetylcholinesterase

Author(s):  
Md. Chayan Ali ◽  
Yeasmin Akter Munni ◽  
Raju Das ◽  
Nasrin Akter ◽  
Kantu Das ◽  
...  
2020 ◽  
Author(s):  
Md. Chayan Ali ◽  
Yeasmin Akter Munni ◽  
Raju Das ◽  
Marium sultana ◽  
Nasrin Akter ◽  
...  

AbstractCurcuma amada or Mango ginger, a member of the Zingiberaceae family, has been revealed as a beneficiary medicinal plant having diverse pharmacological activities against a wide range of diseases. Due to having neuromodulation properties of this plant, the present study characterized the secondary metabolites of Curcuma amada for their drug-likeness properties, identified potent hits by targeting Acetylcholinesterase (AChE) and revealed neuromodulatory potentiality by network pharmacology approaches. Here in silico ADMET analysis was performed for chemical profiling, and molecular docking and molecular dynamics simulations were used to hit selection and binding characterizations. Accordingly, ADMET prediction showed that around 87.59% of compounds processed drug-likeness activity, where four compounds have been screened out by molecular docking. Guided from induced-fit docking, molecular dynamics simulations revealed phytosterol and curcumin derivatives as the most favorable AChE inhibitors with the highest binding energy, as resulted from MM-PBSA analysis. Furthermore, all of the four hits were appeared to modulate several signaling molecules and intrinsic cellular pathways in network pharmacology analysis, which are associated with neuronal growth survival, inflammation, and immune response, supporting their capacity to revert the condition of neuro-pathobiology. Together, the present in silico based characterization and system pharmacology based findings demonstrate Curcuma amada, as a great source of neuromodulating compounds, which brings about new development for complementary and alternative medicine for the prevention and treatment of neurodegenerative disorders.


2020 ◽  
Vol 253 ◽  
pp. 112644
Author(s):  
Francimauro S. Morais ◽  
Kirley M. Canuto ◽  
Paulo R.V. Ribeiro ◽  
Alison B. Silva ◽  
Otilia D.L. Pessoa ◽  
...  

Bioimpacts ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 119-127
Author(s):  
G Divyashri ◽  
T P Krishna Murthy ◽  
Subramaniam Sundareshan ◽  
Pavan Kamath ◽  
Manikanta Murahari ◽  
...  

Introduction: The present study attempts to identify potential targets of H. pylori for novel inhibitors from therapeutic herb, mango ginger (Curcuma amada Roxb.). Methods: Crystal structure of all the selected drug targets obtained from Protein Data Bank (PDB) were subjected to molecular docking against a total of 130 compounds (found to have biological activity against H. pylori) were retrieved from public databases. Compounds with good binding affinity were selected for Prime MM-GBSA rescoring and molecular dynamics (MD) simulation. Final list of compounds were taken for ADMET predictions. Results: Based on binding affinity denoted by glide score and ligand efficiency, mango ginger compounds were found selective to shikimate kinase and type II dehydroquinase through hydrogen bonding and salt bridge interactions. Stability of the interactions and free energy calculations by Prime MM-GBSA results confirmed the affinity of mango ginger compounds towards both shikimate kinase and type II dehydroquinase. From the above results, 15 compounds were calculated for ADMET parameters, Lipinski’s rule of five, and the results were found promising without any limitations. MD simulations identified gentisic acid as hit compound for shikimate kinase of H. pylori. Conclusion: Current study could identify the in silico potential of mango ginger compounds against shikimate kinase and type II dehydroquinase targets for H. pylori infections and are suitable for in vitro and in vivo evaluation.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Adeel Arshad ◽  
Saeed Ahemad ◽  
Hammad Saleem ◽  
Muhammad Saleem ◽  
Gokhan Zengin ◽  
...  

Heliotropium is one of the most important plant genera to have conventional folklore importance, and hence is a potential source of bioactive compounds. Thus, the present study was designed to explore the therapeutic potential of Heliotropium crispum Desf., a relatively under-explored medicinal plant species. Methanolic extracts prepared from a whole plant of H. crispum were studied for phytochemical composition and possible in vitro and in silico biological properties. Antioxidant potential was assessed via six different assays, and enzyme inhibition potential against key clinical enzymes involved in neurodegenerative diseases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), diabetes (α-amylase and α-glucosidase), and skin problems (tyrosinase) was assayed. Phytochemical composition was established via determination of the total bioactive contents and reverse phase ultra-high performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis. Chemical profiling revealed the tentative presence of 50 secondary metabolites. The plant extract exhibited significant inhibition against AChE and BChE enzymes, with values of 3.80 and 3.44 mg GALAE/g extract, respectively. Further, the extract displayed considerable free radical scavenging activity against DPPH and ABTS radicals, with potential values of 43.19 and 41.80 mg TE/g extract, respectively. In addition, the selected compounds were then docked against the tested enzymes, which have shown high inhibition affinity. To conclude, H. crispum was found to harbor bioactive compounds and showed potent biological activities which could be further explored for potential uses in nutraceutical and pharmaceutical industries, particularly as a neuroprotective agent.


2021 ◽  
Author(s):  
Seham S. Elhawary ◽  
Ahmed Mohamed Sayed ◽  
Marwa Yousry Issa ◽  
Hanaa S. Ebrahim ◽  
Rania Alaaeldin ◽  
...  

Herein, we investigated both fruits and leaves of M. macroura Miq. as a potential source of bioactive metabolites against Alzheimer's disease (AD). Chemical profiling of its extracts showed that they...


2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

Author(s):  
Nils Lachmann ◽  
Diana Stauch ◽  
Axel Pruß

ZusammenfassungDie Typisierung der humanen Leukozytenantigene (HLA) vor Organ- und hämatopoetischer Stammzelltransplantation zur Beurteilung der Kompatibilität von Spender und Empfänger wird heutzutage in der Regel molekulargenetisch mittels Amplifikation, Hybridisierung oder Sequenzierung durchgeführt. Durch die exponentiell steigende Anzahl an neu entdeckten HLA-Allelen treten vermehrt Mehrdeutigkeiten, sogenannte Ambiguitäten, in der HLA-Typisierung auf, die aufgelöst werden müssen, um zu einem eindeutigen Ergebnis zu gelangen. Mithilfe kategorisierter Allelfrequenzen (häufig, gut dokumentiert und selten) in Form von CWD-Allellisten (CWD: common and well-documented) ist die In-silico-Auflösung von Ambiguitäten durch den Ausschluss seltener Allele als mögliches Ergebnis realisierbar. Ausgehend von einer amerikanischen CWD-Liste existieren derzeit auch eine europäische, deutsche und chinesische CWD-Liste, die jeweils regionale Unterschiede in den Allelfrequenzen erkennbar werden lassen. Durch die Anwendung von CWD-Allelfiltern in der klinischen HLA-Typisierung können Zeit, Kosten und Arbeitskraft eingespart werden.


Sign in / Sign up

Export Citation Format

Share Document