scholarly journals Online monitoring of the nanoscale zero-valent iron process for trichloroethylene wastewater treatment

2014 ◽  
Vol 12 (5) ◽  
pp. 1647-1656 ◽  
Author(s):  
R.-F. Yu ◽  
F.-H. Chi ◽  
W.-P. Cheng ◽  
M.-H. Wang
2011 ◽  
Vol 194-196 ◽  
pp. 511-514
Author(s):  
Xue Zhang ◽  
Su Qin Li ◽  
Kudureti Ayijamali

As a new kind of materials, nanoscale zero-valent iron which had excellent adsorption ability and high chemical reactivity had been widely applied in advanced wastewater treatment. In this paper, the preparation of nanoscale zero-valent iron particles was liquid phase reduction ,and then iron nanoparticles were characterized by scanning electron microscope and X-ray diffraction. Also the application of nanoscale zero-valent iron in the difficult degradation coking wastewater treatment was discussed.


2017 ◽  
Vol 5 (9) ◽  
pp. 4478-4485 ◽  
Author(s):  
Wei Teng ◽  
Jianwei Fan ◽  
Wei Wang ◽  
Nan Bai ◽  
Rui Liu ◽  
...  

Extraction of precious metals from low-level sources such as wastewater is of significance for water/wastewater treatment and resource recovery.


2020 ◽  
Vol 6 (8) ◽  
pp. 2223-2238 ◽  
Author(s):  
Arvid Masud ◽  
Nita G. Chavez Soria ◽  
Diana S. Aga ◽  
Nirupam Aich

Reduced graphene oxide-nanoscale zero valent iron (rGO–nZVI) nanohybrid, with tunable adsorption sites of rGO and unique catalytic redox activity of nZVI, perform enhanced removal of diverse PPCPs from water.


Author(s):  
Haiyan Song ◽  
Wei Liu ◽  
Fansheng Meng ◽  
Qi Yang ◽  
Niandong Guo

Nanoscale zero-valent iron (nZVI) has attracted considerable attention for its potential to sequestrate and immobilize heavy metals such as Cr(VI) from an aqueous solution. However, nZVI can be easily oxidized and agglomerate, which strongly affects the removal efficiency. In this study, graphene-based nZVI (nZVI/rGO) composites coupled with ultrasonic (US) pretreatment were studied to solve the above problems and conduct the experiments of Cr(VI) removal from an aqueous solution. SEM-EDS, BET, XRD, and XPS were performed to analyze the morphology and structures of the composites. The findings showed that the removal efficiency of Cr(VI) in 30 min was increased from 45.84% on nZVI to 78.01% on nZVI/rGO and the removal process performed coupled with ultrasonic pretreatment could greatly shorten the reaction time to 15 min. Influencing factors such as the initial pH, temperature, initial Cr(VI) concentration, and co-existing anions were studied. The results showed that the initial pH was a principal factor. The presence of HPO42−, NO3−, and Cl− had a strong inhibitory effect on this process, while the presence of SO42− promoted the reactivity of nZVI/rGO. Combined with the above results, the process of Cr(VI) removal in US-nZVI/rGO system consisted of two phases: (1) The initial stage is dominated by solution reaction. Cr(VI) was reduced in the solution by Fe2+ caused by ultrasonic cavitation. (2) In the following processes, adsorption, reduction, and coprecipitation coexisted. The addition of rGO enhanced electron transportability weakened the influence of passivation layers and improved the dispersion of nZVI particles. Ultrasonic cavitation caused pores and corrosion at the passivation layers and fresh Fe0 core was exposed, which improved the reactivity of the composites.


Sign in / Sign up

Export Citation Format

Share Document