scholarly journals Wound Healing Potential of Low Temperature Plasma in Human Primary Epidermal Keratinocytes

2019 ◽  
Vol 16 (6) ◽  
pp. 585-593 ◽  
Author(s):  
Hui Song Cui ◽  
Yoon Soo Cho ◽  
So Young Joo ◽  
Chin Hee Mun ◽  
Cheong Hoon Seo ◽  
...  
Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Mounir Laroussi

This mini review is to introduce the readers of Plasma to the field of plasma medicine. This is a multidisciplinary field of research at the intersection of physics, engineering, biology and medicine. Plasma medicine is only about two decades old, but the research community active in this emerging field has grown tremendously in the last few years. Today, research is being conducted on a number of applications including wound healing and cancer treatment. Although a lot of knowledge has been created and our understanding of the fundamental mechanisms that play important roles in the interaction between low temperature plasma and biological cells and tissues has greatly expanded, much remains to be done to get a thorough and detailed picture of all the physical and biochemical processes that enter into play.


2018 ◽  
Vol 38 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Xing-min Shi ◽  
Gui-min Xu ◽  
Guan-jun Zhang ◽  
Jin-ren Liu ◽  
Yue-ming Wu ◽  
...  

2019 ◽  
Vol 23 (3) ◽  
pp. 746-754
Author(s):  
Dinar Dilshatovich Fazullin ◽  
Gennady Vitalievich Mavrin ◽  
Vladislav Olegovich Dryakhlov ◽  
Ildar Gilmanovich Shaikhiev ◽  
Irek Rashatovich Nizameyev

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 194
Author(s):  
Joanna Pawłat ◽  
Piotr Terebun ◽  
Michał Kwiatkowski ◽  
Katarzyna Wolny-Koładka

Sterilization of municipal waste for a raw material for the production of refuse-derived fuel and to protect surface and ground waters against biological contamination during transfer and storage creates a lot of problems. This paper evaluates the antimicrobial potential of non-equilibrium plasma in relation to the selected groups of microorganisms found in humid waste. The proposed research is to determine whether mixed municipal waste used for the production of alternative fuels can be sterilized effectively using low-temperature plasma generated in a gliding arc discharge reactor in order to prevent water contamination and health risk for working staff. This work assesses whether plasma treatment of raw materials in several process variants effectively eliminates or reduces the number of selected groups of microorganisms living in mixed municipal waste. The presence of vegetative bacteria and endospores, mold fungi, actinobacteria Escherichia coli, and facultative pathogens, i.e., Staphylococcus spp., Salmonella spp., Shigella spp., Enterococcus faecalis and Clostridium perfringens in the tested material was microbiologically analyzed. It was found that the plasma treatment differently contributes to the elimination of various kinds of microorganisms in the analyzed raw materials. The effectiveness of sterilization depended mainly on the time of raw materials contact with low-temperature plasma. The results are very promising and require further research to optimize the proposed hygienization process.


Sign in / Sign up

Export Citation Format

Share Document