Enhanced oral bioavailability of naringenin administered in a mixed micelle formulation with Pluronic F127 and Tween 80 in rats

2015 ◽  
Vol 45 (7) ◽  
pp. 633-640 ◽  
Author(s):  
Im-Sook Song ◽  
Jin-Sun Cha ◽  
Min-Koo Choi
Author(s):  
Arundhati Bhattacharyya ◽  
M Bajpai

Ketoconazole is an imidazole antifungal drug belonging to the class II of Biopharmaceutic Classification System. Maintenance of gastric acidity is essential for adequate dissolution and absorption of ketoconazole. Concurrent administration of antacid and antiulcer preparations decreases the oral absorption of ketoconazole often causing therapeutic failure.  The aim of this study was to evaluate whether a self-emulsifying formulation of ketoconazole would be able to overcome the pH dependent dissolution and oral bioavailability. Self-emulsifying drug delivery system (SEDDS) was prepared after selecting the oil, surfactant and co-surfactant by solubility analysis. Optimum ratio of the components was finalized on the basis of drug content, self-emulsification and mean droplet diameter. The effect of pH on dissolution was studied in comparison to the pure drug. Oral bioavailability was determined in comparison to aqueous suspension in rats and the effect of co-administration of ranitidine hydrochloride solution and a commercially available liquid antacid preparation was studied. The optimized formulation containing 20% Capryol 90 and 40% each of Carbitol and Tween 80, exhibited 100% drug release regardless of the pH whereas the pure drug exhibited a highly pH dependent dissolution. The AUC0-24 resulted with oral administration of the SEDDS formulation was about 34%, 43% and 60% higher compared to the aqueous suspension when administered alone, administered with ranitidine and administered with antacid respectively. The results of the present study demonstrate that self-emulsifying formulations can be utilized for oral delivery of weakly basic drugs like ketoconazole which exhibit pH dependent dissolution.


2003 ◽  
pp. 71-82 ◽  
Author(s):  
Verica Sovilj ◽  
Petar Dokic ◽  
Lidija Petrovic

One of the most significant aspects of polymer-surfactant interaction, from the practical point of view, is that of rheology control and viscosity enhancement. In the oppositely charged polyelectrolyte-surfactant system strong ionic interaction often leads to precipitation of the formed complex yielding serious problems. In this paper the interaction between anionic polyelectrolyte - sodium carboxymethylcellulose (NaCMC) and cationic surfactant - cethyltrimethylammonium bromide (CTMAB) has been investigated by rheological measurements. Addition of electrolyte NaBr and nonionic surfactant - Tween 80 reduced the binding strength, prevented the precipitation of the complex and increased the viscosity of the system. It was found that rheological properties are strong influenced by NaCMC-CTMAB interaction and the system exhibits either pseudoplastic or thixotropic or rheopectic behavior according to the intensity of interaction.


2015 ◽  
Vol 38 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Yeon Ah Choi ◽  
You Hyun Yoon ◽  
Kwangik Choi ◽  
Mihwa Kwon ◽  
Soo Hyeon Goo ◽  
...  

2013 ◽  
Vol 11 (2) ◽  
pp. 83-91
Author(s):  
Fariba Khan ◽  
Md Saiful Islam ◽  
Reza-ul Jalil

Self-emulsifying drug delivery system (SEDDS) is successfully used to improve the aqueous solubility and oral bioavailability of the poorly aqueous soluble drugs. Atorvastatin calcium (ATV), a poorly aqueous soluble drug having low oral bioavailability, was the model drug for this study. The aim of this study was to find out the suitable lipid and surfactant which can be used in formulation of ATV-SEDDS and this was done using ternary phase diagram, an important tool used very essentially in optimizing SEDDS formulations. Ternary phase diagrams of lipid/surfactant/ATV mixture were constructed to generate the solubility data of ATV. Two lipids namely Capmul PG 8, Oleic acid and seven different surfactants namely Tween 20, Tween 80, Cremophor CO 40, Cremophor CO 60, Cremophor EL, Cremophor RH 40 and Cremophor RH 60 were used. For Capmul PG 8/surfactant mixture, solubilizing efficiency order was: Cremophor RH 40 > Tween 80 > Tween 20 > Cremophor CO 60 > Cremophor RH 60 > Cremophor EL > Cremophor CO 40. For Oleic acid/surfactant mixture, solubilizing efficiency order was: Cremophor RH 40 > Tween 80 > Tween 20 > Cremophor RH 60 > Cremophor CO 60 > Cremophor EL > Cremophor CO 40. Considering the solubility phase diagrams of the drug, both Oleic acid and Capmul PG 8 can be used as lipid in combination with any of the surfactants, Cremophor RH40 or Tween 80 or Tween 20 for the development of SEDDS formulations of ATV having enhanced solubility and dissolution property. DOI: http://dx.doi.org/10.3329/dujps.v11i2.14507 Dhaka Univ. J. Pharm. Sci. 11(2): 83-91, 2012 (December)


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 882
Author(s):  
Mihwa Kwon ◽  
Dong Yu Lim ◽  
Chul Haeng Lee ◽  
Ji-Hyeon Jeon ◽  
Min-Koo Choi ◽  
...  

We aimed to develop a berberine formulation to enhance the intestinal absorption and plasma concentrations of berberine through the inhibition of P-glycoprotein (P-gp)-mediated efflux and the intestinal metabolism of berberine in rats. We used pluronic P85 (P85) and tween 80, which have the potential to inhibit P-gp and cytochrome P450s (i.e., CYP1A2, 2C9, 2C19, 2D6, and 3A4). A berberine-loaded mixed micelle formulation with ratios of berberine: P85: tween 80 of 1:5:0.5 (w/w/w) was developed. This berberine mixed micelle formulation had a mean size of 12 nm and increased the cellular accumulation of digoxin via P-gp inhibition. It also inhibited berberine metabolism in rat intestinal microsomes, without significant cytotoxicity, up to a berberine concentration of 100 μM. Next, we compared the pharmacokinetics of berberine and its major metabolites in rat plasma following the oral administration of the berberine formulation (50 mg/kg) in rats with the oral administration of berberine alone (50 mg/kg). The plasma exposure of berberine was significantly greater in rats administered the berberine formulation compared to rats administered only berberine, which could be attributed to the increased berberine absorption by inhibiting the P-gp-mediated berberine efflux and intestinal berberine metabolism by berberine formulation. In conclusion, we successfully prepared berberine mixed micelle formulation using P85 and tween 80 that has inhibitory potential for P-gp and CYPs (CYP2C19, 2D6, and 3A4) and increased the berberine plasma exposure. Therefore, a mixed micelle formulation strategy with P85 and tween 80 for drugs with high intestinal first-pass effects could be applied to increase the oral absorption and plasma concentrations of the drugs.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Dina B. Mahmoud ◽  
Mohamed Mofreh Bakr ◽  
Ahmed A. Al-karmalawy ◽  
Yassmin Moatasim ◽  
Ahmed El Taweel ◽  
...  

AbstractInvestigating bicelles as an oral drug delivery system and exploiting their structural benefits can pave the way to formulate hydrophobic drugs and potentiate their activity. Herein, the ability of non-ionic surfactants (labrasol®, tween 80, cremophore EL and pluronic F127) to form curcumin loaded bicelles with phosphatidylcholine, utilizing a simple method, was investigated. Molecular docking was used to understand the mechanism of bicelles formation. The % transmittance and TEM exhibited bicelles formation with labrasol® and tween 80, while cremophor EL and pluronic F127 tended to form mixed micelles. The surfactant-based nanostructures significantly improved curcumin dissolution (99.2 ± 2.6% within 10 min in case of tween 80-based bicelles) compared to liposomes and curcumin suspension in non-sink conditions. The prepared formulations improved curcumin ex vivo permeation over liposomes and drug suspension. Further, the therapeutic antiviral activity of the formulated curcumin against SARS-CoV-2 was potentiated over drug suspension. Although both Labrasol® and tween 80 bicelles could form bicelles and enhance the oral delivery of curcumin when compared to liposomes and drug suspension, the mixed micelles formulations depicted superiority than bicelles formulations. Our findings provide promising formulations that can be utilized for further preclinical and clinical studies of curcumin as an antiviral therapy for COVID-19 patients.


2018 ◽  
Vol 46 (sup2) ◽  
pp. 668-674 ◽  
Author(s):  
Pinggang Ding ◽  
Hongxue Shen ◽  
Jianan Wang ◽  
Jianming Ju

2017 ◽  
Vol 9 ◽  
pp. 124
Author(s):  
Amelia Luthfiah ◽  
Erny Sagita ◽  
Iskandarsyah Iskandarsyah

Objectives: While p-synephrine exhibits lipolytic activity, it also has a low oral bioavailability as well as hydrophilic characteristic, so it is difficult forit to penetrate the epidermis if it is made into transdermal preparation. The purpose of this research was to increase the penetration of p-synephrineby preparing it as transfersome gel.Materials and Methods: Three transfersome formulas were prepared—F1, F2, and F3—with the surfactants used at Tween 80, Span 80, and thecombination of Tween 80 and Span 80 with a ratio of 1:1, respectively.Results: The results showed that F1 was the best formula, with the highest entrapment efficiency, of 64.058±0.754%, a particle size average of103.3 nm, polydispersity index 0.269±0.05, and zeta potential of −36.2±0.64 mV, so this formula was employed for the gel formulation. Two gelformulas were then prepared, transfersome gel (GT) and non transfersome gel (GNT).Conclusions: The two gels were evaluated for their physical stability, and GT was found to be more stable than GNT.


Sign in / Sign up

Export Citation Format

Share Document