Simulating One-Dimensional Consolidation of Clays with Non-Darcian Flow by using Newton–Raphson Technique

Author(s):  
Amit Singh ◽  
Manash Chakraborty
2019 ◽  
pp. 31-36

Modelamiento Numérico Espacio-Temporal 1D de la Infiltración Basado en la Ecuación de Richards y Otras Simplificadas Numerical Modeling Temporary-Space 1D of the Infiltration Based on Richards's Equation and Other Simplified Pino Vargas E., Mejía Marcacuzco J. Abel, Chávarri Velarde E. Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú Universidad Nacional Agraria La Molina, Lima, Perú DOI: https://doi.org/10.33017/RevECIPeru2012.0006/ RESUMEN La infiltración es uno de los procesos hidrológicos que cobra mucha importancia en la ingeniería de ambiental y de recursos hídricos, por décadas muchos investigadores han venido haciendo esfuerzos en modelar el proceso de infiltración, partiendo de la ecuación de Richards (1931). El comportamiento de la infiltración puede ser tratado en forma tridimensional y tiempo en su forma más compleja, y dependiendo del uso que se requiera hasta en su forma unidimensional mas la componente temporal. En este trabajo se reduce la ecuación de Richards a su expresión unidimensional más su componente temporal y se resuelve bajo el método de diferencias finitas usando el esquema de Crank Nicolson en un esquema implícito alterno exacto en segundo orden tanto en espacio como en tiempo. Dicho esquema fue codificado en MATLAB, y los resultados cumplen satisfactoriamente el objetivo de predecir el movimiento del agua en el subsuelo a partir de datos de propiedades físicas de los suelos y condiciones impuestas tipo dirichlet de carga de agua sobre el suelo. Asimismo el modelo es muy versátil, puesto que permite establecer al usuario condiciones como profundidad total de simulación, espaciamiento entre nudos e intervalos de cálculo para la variable temporal. En el caso del modelo de Smith-Parlange (1978), fue resuelto usando el algoritmo de Newton Raphson, el mismo que también fue implementado en un código computacional en MATLAB, arrojando resultados satisfactorios similares a los del modelo anterior. Asimismo se elaboro un código computacional para resolver el Modelo Green Ampt (1911), haciendo la comparación de los tres modelos mencionados. Descriptores: Ecuación de Richards, Smith Parlage, Green Ampt, Infiltración, Modelamiento Numérico 1D. ABSTRACT The infiltration is one of the hydrological processes that receives a lot of importance in the environmental engineering and of water resources, per decades many investigators have come doing efforts to model the process of infiltration, departing from the equation of Richards (1931). The behavior of the infiltration can be treated in form three dimensional and time in its most complex, and depending on what is required even in its one-dimensional form most the temporal component. In this work Richards's equation diminishes to his expression unidimensional, more his temporary component and is solved under the method of finite differences using Crank-Nicolson's, scheme in an implicit alternate exact scheme, in the second order both in space and in time. The above mentioned scheme was codified in MATLAB, and the results fulfill satisfactorily the aim to predict the movement of the water in the subsoil, from information of physical properties of the soils and well conditions type dirichlet of water over on the soil. Likewise the model is very versatile, since it allows to establish the user, conditions as total depth of simulation, spacing between knots and intervals of calculation for the temporary variable. In case of the model of Smith-Parlange (1978), it was solved using the algorithm of Newton Raphson, the same one who also was implemented in a computational code in MATLAB, throwing satisfactory results similar to those of the previous model. Likewise, I elaborate a computational code to resolve the Model Green Ampt (1911), doing the comparison of three mentioned models. Keywords: Richards’s equation, Smith Parlage, Green Ampt, Infiltration, Numerical Modeling 1D.


2020 ◽  
Vol 4 (3) ◽  
pp. 300-304
Author(s):  
A. Tanimu ◽  
I. M. Bagudo

In this work, the concept of resonant states (RSs) in a finite square quantum well is presented. We first derive the analytic secular transcendental equations for even and odd states by applying the outgoing wave boundary conditions into the one-dimensional Schrödinger’s wave equation. The complex solution of these equations is found using the numerical Newton-Raphson method implemented in MATLAB. We can see in particular, that the RSs present a general class of Eigenstates, which includes bound states, anti-bound states, and normal RSs.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
A.Q. He ◽  
G.W. Qiao ◽  
J. Zhu ◽  
H.Q. Ye

Since the first discovery of high Tc Bi-Sr-Ca-Cu-O superconductor by Maeda et al, many EM works have been done on it. The results show that the superconducting phases have a type of ordered layer structures similar to that in Y-Ba-Cu-O system formulated in Bi2Sr2Can−1CunO2n+4 (n=1,2,3) (simply called 22(n-1) phase) with lattice constants of a=0.358, b=0.382nm but the length of c being different according to the different value of n in the formulate. Unlike the twin structure observed in the Y-Ba-Cu-O system, there is an incommensurate modulated structure in the superconducting phases of Bi system superconductors. Modulated wavelengths of both 1.3 and 2.7 nm have been observed in the 2212 phase. This communication mainly presents the intergrowth of these two kinds of one-dimensional modulated structures in 2212 phase.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Sign in / Sign up

Export Citation Format

Share Document