Thermal characteristics of room temperature inorganic phase change system containing calcium chloride

2015 ◽  
Vol 31 (3) ◽  
pp. 452-456 ◽  
Author(s):  
Daolin Gao ◽  
Yafei Guo ◽  
Xiaoping Yu ◽  
Shiqiang Wang ◽  
Tianlong Deng
2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Guansheng Chen ◽  
Nanshuo Li ◽  
Huanhuan Xiang ◽  
Fan Li

It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.


2021 ◽  
Vol 414 ◽  
pp. 128884
Author(s):  
Shuxian Wang ◽  
Jinpu Zhang ◽  
Zhengmao Ye ◽  
Haohai Yu ◽  
Huaijin Zhang

2021 ◽  
Vol 129 (7) ◽  
pp. 075103
Author(s):  
Matt Jacobs ◽  
Xinran Zhou ◽  
Edgar Olivera ◽  
Ryan Sheil ◽  
Shu Huang ◽  
...  

2000 ◽  
Vol 658 ◽  
Author(s):  
Dong Li ◽  
M. A. Subramanian

ABSTRACTAcceptor and Donor codoped BaTiO3 and Ba1−xSrxTiO3 are prepared. For Ba1−xLaxTi1−xFexO3,BaTiO3 remains as tetragonal phase up to about 5mol% LaFeO3. For x ≥0.06, the structure changes to cubic at room temperature. The phase change shifts the Curie temperature to lower value and increases the tunability at room temperature. Doping of other acceptor (Al, Cr) and donor (Sm, Gd, Dy) ions has the same effect although with varying levels of tuning. BaTiO3: 4%LaFeO3 has the highest tunability among the studied systems, which is even higher than Ba0.6Sr0.4TiO3. Co-doping of (La, Fe) and (La, Al) in Ba1−xSrxTiO3 also lowers the Curie temperature and increases the tunability of high Ba content samples at cryogenic temperature.


2019 ◽  
Vol 35 ◽  
pp. 1310-1315
Author(s):  
Xiaoliang Liu ◽  
Guoqiang Li ◽  
Shouxin Sun ◽  
Zhengmei Qiu ◽  
Xiaohui Lu ◽  
...  

Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


1984 ◽  
Vol 106 (1) ◽  
pp. 106-111 ◽  
Author(s):  
D. Dietz

The thermal performance of an air-heated/cooled, phase-change, heat stoage module was tested and evaluated. The module (rated at 38.7 kWh) consist of 130 vertically oriented tubes filled with 729 kg (1607 lb) of calcium chloride hexahydrate and enclosed in a rectangular box. Heat transfer rates measured during charging and discharging decreased with time as a result of decreasing effective heat transfer area and increasing thermal resistance of the phase-change material. These two dominant effects are included in a proposed mathematical model that predicted the experimental data.


Sign in / Sign up

Export Citation Format

Share Document