scholarly journals On the impact of correlations on the congruence test: a bootstrap approach

2020 ◽  
Vol 55 (3) ◽  
pp. 495-513 ◽  
Author(s):  
Kermarrec Gaël ◽  
Kargoll Boris ◽  
Alkhatib Hamza

AbstractThe detection of deformation is one of the major tasks in surveying engineering. It is meaningful only if the statistical significance of the distortions is correctly investigated, which often underlies a parametric modelization of the object under consideration. So-called regression B-spline approximation can be performed for point clouds of terrestrial laser scanners, allowing the setting of a specific congruence test based on the B-spline surfaces. Such tests are known to be strongly influenced by the underlying stochastic model chosen for the observation errors. The latter has to be correctly specified, which includes accounting for heteroscedasticity and correlations. In this contribution, we justify and make use of a parametric correlation model called the Matérn model to approximate the variance covariance matrix (VCM) of the residuals by performing their empirical mode decomposition. The VCM obtained is integrated into the computation of the congruence test statistics for a more trustworthy test decision. Using a real case study, we estimate the distribution of the test statistics with a bootstrap approach, where no parametric assumptions are made about the underlying population that generated the random sample. This procedure allows us to assess the impact of neglecting correlations on the critical value of the congruence test, highlighting their importance.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3640 ◽  
Author(s):  
Kermarrec ◽  
Paffenholz ◽  
Alkhatib

B-spline surfaces possess attractive properties such as a high degree of continuity or the local support of their basis functions. One of the major applications of B-spline surfaces in engineering geodesy is the least-square (LS) fitting of surfaces from, e.g., 3D point clouds obtained from terrestrial laser scanners (TLS). Such mathematical approximations allow one to test rigorously with a given significance level the deformation magnitude between point clouds taken at different epochs. Indeed, statistical tests cannot be applied when point clouds are processed in commonly used software such as CloudCompare, which restrict the analysis of deformation to simple deformation maps based on distance computation. For a trustworthy test decision and a resulting risk management, the stochastic model of the underlying observations needs, however, to be optimally specified. Since B-spline surface approximations necessitate Cartesian coordinates of the TLS observations, the diagonal variance covariance matrix (VCM) of the raw TLS measurements has to be transformed by means of the error propagation law. Unfortunately, this procedure induces mathematical correlations, which can strongly affect the chosen test statistics to analyse deformation, if neglected. This may lead potentially to rejecting wrongly the null hypothesis of no-deformation, with risky and expensive consequences. In this contribution, we propose to investigate the impact of mathematical correlations on test statistics, using real TLS observations from a bridge under load. As besides TLS, a highly precise laser tracker (LT) was used, the significance of the difference of the test statistics when the stochastic model is misspecified can be assessed. However, the underlying test distribution is hardly tractable so that only an adapted bootstrapping allows the computation of trustworthy p-values. Consecutively, the extent to which heteroscedasticity and mathematical correlations can be neglected or simplified without impacting the test decision is shown in a rigorous way, paving the way for a simplification based on the intensity model.


2020 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Corinna Harmening ◽  
Jens-André Paffenholz

Plant phenotyping deals with the metrological acquisition of plants in order to investigate the impact of environmental factors and a plant’s genotype on its appearance. Phenotyping methods that are used as standard in crop science are often invasive or even destructive. Due to the increase of automation within geodetic measurement systems and with the development of quasi-continuous measurement techniques, geodetic techniques are perfectly suitable for performing automated and non-invasive phenotyping and, hence, are an alternative to standard phenotyping methods. In this contribution, sequentially acquired point clouds of cucumber plants are used to determine the plants’ phenotypes in terms of their leaf areas. The focus of this contribution is on the spatio-temporal segmentation of the acquired point clouds, which automatically groups and tracks those sub point clouds that describe the same leaf. The application on example data sets reveals a successful segmentation of 93% of the leafs. Afterwards, the segmented leaves are approximated by means of B-spline surfaces, which provide the basis for the subsequent determination of the leaf areas. In order to validate the results, the determined leaf areas are compared to results obtained by means of standard methods used in crop science. The investigations reveal consistency of the results with maximal deviations in the determined leaf areas of up to 5%.


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Corinna Harmening ◽  
Hans Neuner

AbstractFreeform surfaces like B-splines have proven to be a suitable tool to model laser scanner point clouds and to form the basis for an areal data analysis, for example an areal deformation analysis.A variety of parameters determine the B-spline's appearance, the B-spline's complexity being mostly determined by the number of control points. Usually, this parameter type is chosen by intuitive trial-and-error-procedures.In [The present paper continues these investigations. If necessary, the methods proposed in [The application of those methods to B-spline surfaces reveals the datum problem of those surfaces, meaning that location and number of control points of two B-splines surfaces are only comparable if they are based on the same parameterization. First investigations to solve this problem are presented.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6815
Author(s):  
Cheng Yi ◽  
Dening Lu ◽  
Qian Xie ◽  
Jinxuan Xu ◽  
Jun Wang

Global inspection of large-scale tunnels is a fundamental yet challenging task to ensure the structural stability of tunnels and driving safety. Advanced LiDAR scanners, which sample tunnels into 3D point clouds, are making their debut in the Tunnel Deformation Inspection (TDI). However, the acquired raw point clouds inevitably possess noticeable occlusions, missing areas, and noise/outliers. Considering the tunnel as a geometrical sweeping feature, we propose an effective tunnel deformation inspection algorithm by extracting the global spatial axis from the poor-quality raw point cloud. Essentially, we convert tunnel axis extraction into an iterative fitting optimization problem. Specifically, given the scanned raw point cloud of a tunnel, the initial design axis is sampled to generate a series of normal planes within the corresponding Frenet frame, followed by intersecting those planes with the tunnel point cloud to yield a sequence of cross sections. By fitting cross sections with circles, the fitted circle centers are approximated with a B-Spline curve, which is considered as an updated axis. The procedure of “circle fitting and B-SPline approximation” repeats iteratively until convergency, that is, the distance of each fitted circle center to the current axis is smaller than a given threshold. By this means, the spatial axis of the tunnel can be accurately obtained. Subsequently, according to the practical mechanism of tunnel deformation, we design a segmentation approach to partition cross sections into meaningful pieces, based on which various inspection parameters can be automatically computed regarding to tunnel deformation. A variety of practical experiments have demonstrated the feasibility and effectiveness of our inspection method.


2021 ◽  
Vol 13 (16) ◽  
pp. 3124
Author(s):  
Jakob Raschhofer ◽  
Gabriel Kerekes ◽  
Corinna Harmening ◽  
Hans Neuner ◽  
Volker Schwieger

A flexible approach for geometric modelling of point clouds obtained from Terrestrial Laser Scanning (TLS) is by means of B-splines. These functions have gained some popularity in the engineering geodesy as they provide a suitable basis for a spatially continuous and parametric deformation analysis. In the predominant studies on geometric modelling of point clouds by B-splines, uncorrelated and equally weighted measurements are assumed. Trying to overcome this, the elementary errors theory is applied for establishing fully populated covariance matrices of TLS observations that consider correlations in the observed point clouds. In this article, a systematic approach for establishing realistic synthetic variance–covariance matrices (SVCMs) is presented and afterward used to model TLS point clouds by B-splines. Additionally, three criteria are selected to analyze the impact of different SVCMs on the functional and stochastic components of the estimation results. Plausible levels for variances and covariances are obtained using a test specimen of several dm—dimension. It is used to identify the most dominant elementary errors under laboratory conditions. Starting values for the variance level are obtained from a TLS calibration. The impact of SVCMs with different structures and different numeric values are comparatively investigated. Main findings of the paper are that for the analyzed object size and distances, the structure of the covariance matrix does not significantly affect the location of the estimated surface control points, but their precision in terms of the corresponding standard deviations. Regarding the latter, properly setting the main diagonal terms of the SVCM is of superordinate importance compared to setting the off-diagonal ones. The investigation of some individual errors revealed that the influence of their standard deviation on the precision of the estimated parameters is primarily dependent on the scanning distance. When the distance stays the same, one-sided influences on the precision of the estimated control points can be observed with an increase in the standard deviations.


2016 ◽  
Vol 76 ◽  
pp. 141-151 ◽  
Author(s):  
Thomas Mörwald ◽  
Jonathan Balzer ◽  
Markus Vincze

2020 ◽  
Vol 12 (5) ◽  
pp. 829 ◽  
Author(s):  
Gaël Kermarrec ◽  
Boris Kargoll ◽  
Hamza Alkhatib

The choice of an appropriate metric is mandatory to perform deformation analysis between two point clouds (PC)—the distance has to be trustworthy and, simultaneously, robust against measurement noise, which may be correlated and heteroscedastic. The Hausdorff distance (HD) or its averaged derivation (AHD) are widely used to compute local distances between two PC and are implemented in nearly all commercial software. Unfortunately, they are affected by measurement noise, particularly when correlations are present. In this contribution, we focus on terrestrial laser scanner (TLS) observations and assess the impact of neglecting correlations on the distance computation when a mathematical approximation is performed. The results of the simulations are extended to real observations from a bridge under load. Highly accurate laser tracker (LT) measurements were available for this experiment: they allow the comparison of the HD and AHD between two raw PC or between their mathematical approximations regarding reference values. Based on these results, we determine which distance is better suited in the case of heteroscedastic and correlated TLS observations for local deformation analysis. Finally, we set up a novel bootstrap testing procedure for this distance when the PC are approximated with B-spline surfaces.


2021 ◽  
Vol 13 (18) ◽  
pp. 3551
Author(s):  
Corinna Harmening ◽  
Christoph Hobmaier ◽  
Hans Neuner

Due to the increased use of areal measurement techniques, such as laser scanning in geodetic monitoring tasks, areal analysis strategies have considerably gained in importance over the last decade. Although a variety of approaches that quasi-continuously model deformations are already proposed in the literature, there are still a multitude of challenges to solve. One of the major interests of engineering geodesy within monitoring tasks is the detection of absolute distortions with respect to a stable reference frame. Determining distortions and simultaneously establishing the joint geodetic datum can be realised by modelling the differences between point clouds acquired in different measuring epochs by means of a rigid body movement that is superimposed by distortions. In a previous study, we discussed the possibility of estimating these rigid body movements from the control points of B-spline surfaces approximating the acquired point clouds. Alternatively, we focus on estimating them by means of constructed points on B-spline surfaces in this study. This strategy has the advantage of larger redundancy compared to the control point–based strategy. Furthermore, the strategy introduced allows for the detection of rigid body movements between point clouds of different epochs and for the simultaneous localisation of areas in which the rigid body movement is superimposed by distortions. The developed approach is based on B-spline models of epoch-wise acquired point clouds, the surface parameters of which define point correspondences on different B-spline surfaces. Using these point correspondences, a RANSAC-approach is used to robustly estimate the parameters of the rigid body movement. The resulting consensus set initially defines the non-distorted areas of the object under investigation, which are extended and statistically verified in a second step. The developed approach is applied to simulated data sets, revealing that distorted areas can be reliably detected and that the parameters of the rigid body movement can be precisely and accurately determined by means of the strategy.


Sign in / Sign up

Export Citation Format

Share Document