Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis

2016 ◽  
Vol 39 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Lillian França Borges Chagas ◽  
Henrique Guilhon De Castro ◽  
Brigitte Sthepani Orozco Colonia ◽  
Magno Rodrigues De Carvalho Filho ◽  
Luciane De Oliveira Miller ◽  
...  
2013 ◽  
Vol 22 (3) ◽  
pp. 258
Author(s):  
S Widawati ◽  
Agus Muharam

ABSTRAK. Beberapa mikrob yang bersifat nonpatogenik dan nonsimbiotik yang efektif menambat nitrogen dari udara serta mampu melarutkan P terikat pada Ca, Al, dan Fe dalam tanah, dapat hidup dalam berbagai ekosistem di alam. Sebagian bakteri tersebut dapat diisolasi dari daerah perakaran tanaman hortikultura. Penelitian bertujuan mengetahui peran Azospirillum sp. yang potensial sebagai pendorong pertumbuhan tanaman pada ekosistem pantai dan kondisi lingkungan yang ekstrim. Pengujian terhadap isolat bakteri yang dikumpulkan dari berbagai kondisi ekosistem dilaksanakan di Laboratorium Ekofisiologi, Pusat Penelitian Biologi, LIPI, Bogor dari Bulan Januari sampai dengan Desember 2011. Sebanyak 34 isolat Azospirillum sp. diuji dengan berbagai metode, yaitu (1) uji kualitatif kemampuan isolat Azospirillum sp.  dalam menambat (fiksasi) nitrogen dan kemampuan hidup pada media Okon padat yang mengandung NaCl, (2) uji kualitatif kemampuan isolat Azospirillum sp. dalam melarutkan P terikat pada  Ca3(PO4)2 dalam media  Pikovskaya padat dan indeks efisiensi pelarutan fosfat,  (3) uji kualitatif kemampuan isolat Azospirillum sp. dalam melarutkan P terikat pada media  Pikovskaya cair  dan aktivitas enzim PME-ase asam dan basa, serta kondisi pH selama inkubasi 7 hari pada kultur murni (pH asal= 7), dan (4) analisis kemampuan Azospirillum sp. dalam memproduksi indole acetic acid (IAA).  Hasil penelitian menunjukkan bahwa: (1) semua isolat bakteri yang diuji mampu menambat nitrogen dalam media Okon padat,  (2) isolat B2, B4, B6, B12,  B14, PS2, dan FR13 mampu melarutkan P dari Ca3(PO4)2 dalam medium Pikovskaya padat dengan masing-masing indeks efisiensi pelarutan sebesar  120, 160, 140, 100, 110, 120, dan 100,  (3) isolat B1, B2, B3, B4, B6, B14, B17, PS1, PS2, PS3, FR1, FR5, FR7, FR8, FR10, FR12, dan FR13 mampu tumbuh dalam medium Okon dengan kandungan NaCl sebesar 0, 2, 4, atau 6%, (4)  konsentrasi tertinggi P terlarut dihasilkan oleh isolat B4 (5,80 mg/l), B6 (5,84 mg/l), dan PS2 (5,45 mg/l) dengan PME-ase sebesar 0,58 u m/l, 0,58 u m/l, 0,57 u m/l (asam), 0,52 mg/l, 0,50 mg/l, 0,48 mg/l (basa), dan dengan  pH : 4,20, 4,30, dan 4,22,  dan (5) isolat B4 dan B6 yang diisolasi dari pertanaman padi di pantai Rambut Siwi, Bali, mampu memproduksi IAA tertinggi, yaitu masing-masing sebesar 0,6749 dan 0,4694 ppm pada hari pertama setelah perlakuan. Berdasarkan hasil penelitian ini terbukti bahwa isolat Azospirillum sp. berpotensi sebagai plant growth promoter  untuk ekosistem di daerah pesisir atau pantai. Bakteri tersebut sangat penting untuk pengkayaan nutrisi pada lahan di daerah dataran rendah atau pantai dalam rangka pengembangan tanaman termasuk komoditas hortikultura.<br /><br />ABSTRACT. Widawati, S and Muharam, A 2012. The Laboratory  Test of  Azospirillum sp. Isolated  from Several  Ecosystems. Microbes that are nonpathogenic  and nonsymbiotic bacteria which are effectively fixed up nitrogen from air, and are able to dissolve phosphated bounded on Ca, Al, and Fe in soil, are able to growth in different ecosystems in nature. Some of the bacterial species can be isolated from rizosphere of horticultural crops. The research was aimed to determine the potential role of Azospirillum sp.  as a plant growth promoter in coastal ecosystem and extremely environmental conditions. The laboratory test of Azospirillum sp. isolated from several ecosystems was carried out in the Ecophysiology Laboratory, Research Center for Biology, Indonesian Institute of Sciences, Bogor from January until December 2011. Thirty-four isolates of Azospirillum sp. (B1 to B17;PS1 to PS3; FR1 to FR 14) were investigated with some methods i.e. (1) the qualitative test of the capability of Azospirillum sp. to fix up nitrogen in solid Okon medium containing NaCl, (2) the qualitative test of the capability of Azospirillum sp. in dissolving bounded P in solid Pikovskaya medium and phosphate dissolution efficiency index,  (3) the qualitative test of the capability of Azospirillum sp. in dissolving bounded P in liquid Pikovskaya medium and the activity of acid and base PME-ase, and pH condition after 7 days incubation in pure media, and (4) analysis of the capability of Azospirillum sp. in producing indole acetic acid (IAA).  The results pointed out that : (1) all tested isolates of Azospirillum sp. were  capable to fix up nitrogen in solid Okon medium, (2) isolates of B2, B4, B6, B12,  B14, PS2, and FR13 were capable to solubilize P on Ca3(PO4)2 in solid Pikovskaya medium with its efficiency of  120, 160, 140, 100, 110, 120, and 100, respectively, (3) isolates of B1, B2, B3, B4, B6, B14, B17, PS1, PS2, PS3, FR1, FR5, FR7, FR8, FR10, FR12, and FR13 were able to grow in Okon medium with 0, 2, 4, or 6% of NaCl doses, (4) the highest concentrations of solubilized P was resulted by isolates B4 (5.80 mg/l), B6 (5.84 mg/l), and PS2 (5.45 mg/l) with PME-ase i.e. 0.58 u m/l, 0.58 u m/l, 0.57 u m/l (acid), 0.52 mg/l, 0.50 mg/l, 0.48 mg/l (base), and with pH : 4.20, 4.30, and 4.22, and (5) isolates of B4 and B6 isolated from rice field at Rambut Siwi beach, Bali, were capable to produce highest IAA hormone i.e. 0.6749 and 0.4694 ppm respectively  on the first day after the treatment. Based on the result of this experiment it can be concluded that Azospirillum sp. is a potential plant growth promoting Rhizobacteria for coastal ecosystem. The bacterial species is very important to enrich coastal areas for crop cultivation, including horticulture.<br /><br />


2017 ◽  
Vol 92 (2) ◽  
pp. 176 ◽  
Author(s):  
Lillian França Borges Chagas ◽  
Aloisio Freitas Chagas Junior ◽  
Henrique Guilhon de Castro

The use of microorganisms in medicinal plants may provide an increase in biomass. The objective of this work was to evaluate the efficiency and capacity of Trichoderma strains to solubilize phosphate and to synthesize indole acetic acid (IAA) in vitro in the biomass production of two medicinal plants, basil and mint. Cultures were inoculated with two species of Trichoderma. The crop biomass as well as the relative efficiency were determined. Trichoderma species that solubilized phosphate and produced IAA, provided significant results in the accumulation of biomass of the crops, with relative efficiency of 276% for mint and 141% for basil, in relation to the control. The Trichoderma isolates showed phosphate solubilization capacity and IAA synthesis. Therefore, the studied crops presented biomass increase. These strains verified their capacity as plant growth promoters.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Anam Yousaf ◽  
Hassan Ahmed Khan ◽  
Tayyaba Younas

Plant are benefitted in different aspects by symbiotic bacteria. Environmental conditions, Plantconditions and type of pathogens determine these important services for plants Objective: Theresearch was conducted to assess the plant growth enhancing effects of wheat and cabbagerhizobacteria on the growth of wheat plant Methods: For this purpose, total 49 bacteria were isolatedand characterized from the rhizosphere of wheat and cabbage plants. The isolates were assessed forplant growth promoting properties such as: indole acetic acid production, phosphate solubilization,antibacterial activity and heavy metal resistance. Indole acetic acid was found to be produced by 7isolates and phosphate solubilization was shown by 20 isolates. Antibacterial activity was determinedagainst four clinical isolates like Staphylococcus aureus, Klebsiella sp., Escherichia coli and Pseudomonasaeruginosa Results: Antibacterial activity against Staphylococcus aureus was shown by 38 isolates, 12isolates showed antibacterial activity against Escherichia coli and Klebsiella sp., whereas no isolate wasfound to be positive against Pseudomonas aeruginosa. Another plant growth enhancing trait (heavymetal resistance) was shown by 28 rhizobacteria. In order to evaluate the capability of isolates toenhance the plant growth, bio-inoculation assay was performed using wheat seeds Conclusions:Rhizobacterial inoculation increased the number of roots, shoots, leaves and roots and shoot length ofwheat plantlets as compared to un-inoculated control.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
A. M. Aguirre-Monroy ◽  
J. C. Santana-Martínez ◽  
J. Dussán

Over the past ten years, more than twenty fires have affected the El Noviciado estate located in Cerro Majuy, Colombia, leading to a loss of soil nutrients and infertility.Lysinibacillus sphaericus, a Gram-positive, mesophilic, and spore-forming bacterium, can be used in soil amendment in the replantation processes, given its ability to fix nitrogen, and nitrify, and solubilize phosphorus, increasing soil nutrients used for plant growth. In this study, we evaluated the soil-amendment potential ofL. sphaericusby monitoring the nutrient content of a selected fragment of soil in the El Noviciado estate. For this purpose, we added a mixture ofL. sphaericusOT4b.31, OT4b.49, CBAM5, III(3)7, and 2362 strains and determined the ammonium, nitrites, nitrates, phosphorus, and indole acetic acid concentrations in soil.Alnus acuminatasbsp.acuminata, a native model plant known for its restoration effect, was used for replantation. Results indicated that soils with addedL. sphaericuspresented significant differences in ammonium, nitrites, nitrates, phosphorus, and indole acetic acid concentrations when compared to control soils. Further, results showed no significant differences between soil that had been pre-inoculated in greenhouse and soil directly inoculated in field. We propose thatL. sphaericuscould be a good nutrient enhancer and plant growth promoter that can be used for the amendment of fire-impacted soils and replantation treatments.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Seun Owolabi Adebajo ◽  
Pius Olugbenga Akintokun ◽  
Emmanuel Ezaka ◽  
Abidemi Esther Ojo ◽  
Donald Uzowulu Olannye ◽  
...  

Abstract Background Environmental deterioration arising from the misuse of pesticides and chemical fertilizers in agriculture has resulted in the pursuit of eco-friendly means of growing crop. Evidence has shown that biofertilizers and biocontrol can boost soil fertility and suppress soil pathogens without compromising the safety of the environment. Hence, the study investigated the use of termitarium soil as a viable source for biofertilizer and biocontrol. Results Twenty-seven soil samples were collected from nine different mound soil (household, farm and water bodies in a sterile sample bag). Aliquots of serially diluted samples were plated on nutrient agar, plate count agar, eosin methylene blue agar and MacConkey agar plates. Isolates were identified using standard microbiological techniques. Identified isolates were screened for plant growth-promoting properties using phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Activities of the plant growth-promoting bacteria were carried out using antagonism by diffusible substance method and antagonistic activity of cell-free culture filtrate of bacterial isolates against Ralstonia solanacearum and Fusarium oxysporum. Two hundred bacterial isolates were recovered from the 27 soil samples. The most predominant isolate was Bacillus spp. Out of the 200 bacterial isolates, 57 were positive for phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Out of the 57 isolates, six bacterial isolates had antagonistic activities against Fusarium oxysporum, while seven bacterial isolates antagonized Ralstonia solanacearum. Conclusion The result showed that termite mound soil contains some useful bacteria that are capable of solubilizing phosphate and potassium and producing indole acetic acid which are the plant growth-promoting potentials and as well suppressing plant soil pathogen.


Sign in / Sign up

Export Citation Format

Share Document