Pulsating flow and heat transfer analysis around a heated semi-circular cylinder at low and moderate Reynolds numbers

Author(s):  
Neelesh Bhalla ◽  
Amit Kumar Dhiman
Author(s):  
David L. Rigby ◽  
Jan Lepicovsky

This paper describes the addition of conjugate capability to an existing Navier-Stokes code. Also, results are presented for an internally cooled configuration. The code is currently referred to as the Glenn-HT code, because of its origin at the NASA Glenn Research center and its proven ability to predict flow and Heat Transfer. In the past, the code had been called traf3d.mb. The addition of the conjugate capability to the code was accomplished with a minimum amount of changes to the code, with the understanding that if more advanced techniques were required they could be added at a later date. In the solid region, the density is constant and the velocities are of course zero which leaves only a simplified form of the energy equation to be solved. This simplified energy equation is solved using the same method as in the gas regions with only minor changes to the numerical parameters. At the interface between the gas and solid the wall temperature is set so as to produce the same heat flux in each region. Results are presented for a pipe flow to validate the implementation. Numerical and experimental results are then presented for flow over a flat plate that is cooled internally. Flat plate Reynolds numbers in the range 180,000 to 950,000, and coolant channel Reynolds numbers in the range 30,000 to 60,000 are presented.


2020 ◽  
Vol 184 ◽  
pp. 01027
Author(s):  
B Ch Nookaraju

Computational investigation of steady, two-dimensional heat transfer attributes for forced convective chaotic discharge in a vertical channel of cluster of heated rectangular sections is performed. The discharge is deemed to be periodic fully developed so that the issue is determined for two extending zone and explanation is developed to more number of sections. This structure reproduces the driven convective cooling of a cluster of engraved circuit panels confronted in computerize belongings. Two mathematical statements for k- ℇ model is used for modeling for the turbulence and the finite volume methodology is used. Computations are performed for Reynolds numbers ranging from 6000-12000, Prandtl number of 0.7 and various geometric parameters characterizing the problem. As Reynolds number steps up the Nusselt Number increases. Re-circulations undermine the local Nusselt number when matched with comparing variation from a identical plate. The velocity contours, temperature distributions, variation of turbulent kinetic energy and kinetic energy dissipation rates in a vertical channel is found. With the blocks in the cluster, pressure fall is higher in resemblance to plane duct.


1992 ◽  
Vol 114 (3) ◽  
pp. 348-355 ◽  
Author(s):  
D. P. Telionis ◽  
M. Gundappa ◽  
T. E. Diller

Skin friction, pressure, and heat transfer gages are employed to monitor the flow and heat transfer field along the periphery of a circular cylinder in steady and pulsed flow at Reynolds numbers, Re = 23,000 to 50,000. Averaged distributions, RMS, and power spectra of all measurements are displayed. Special attention is directed at the organization of the near wake, as detected by the three types of surface gages. The response of the wake to pulsing of the oncoming stream is also examined. It is found that when the wake is locked on the driving frequency, the basic character of the flow is not changed, but the organized motion stands out more clearly. Moreover, the signals become cleaner and background noise in the spectra is reduced. Skin friction and heat transfer gages are shown to respond to local variations of the corresponding quantities, whereas pressure gages respond to global characteristics of the flow.


2006 ◽  
Vol 9 (1) ◽  
pp. 1-14 ◽  
Author(s):  
H. Dhahri ◽  
A. Boughamoura ◽  
Sassi Ben Nasrallah

2021 ◽  
Vol 382 ◽  
pp. 111373
Author(s):  
Zhipeng Liu ◽  
Daishun Huang ◽  
Chenglong Wang ◽  
Qifan Yu ◽  
Dalin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document