scholarly journals Synergistic modification of the tribological properties of polytetrafluoroethylene with polyimide and boron nitride

Friction ◽  
2020 ◽  
Author(s):  
Chaojie Xie ◽  
Kejian Wang

Abstract Polytetrafluoroethylene (PTFE) blended with polyimide (PI) and filled with boron nitride (BN) is prepared through cold pressing and sintering for composites with remarkable wear resistance and reduced coefficient of friction (COF). The characterizations show that BN and PI at different levels, improve the hardness, dynamic thermo-mechanical modulus, thermal conductivity, and tribological properties of PTFE. PI boosts the dispersion and bonding of BN in PTFE. In dry sliding friction of a block-on-ring tribometer, the wear rate and COF of 10:10:80 BN/PI/PTFE reduce to almost 1/300 and 80% of those of pure PTFE, respectively, as the wear mechanism transition from being adhesive to partially abrasive. This occurs only when the additives BN and PI induce a synergistic effect, that is, at concentrations that are not higher than ca. 10 wt% and 15 wt%, respectively. The obvious agglomeration at high percentages of added PI and severe conditions (400 N and 400 rpm) induce strong adhesive failure. The variations in the tensile properties, hardness, crystallization, and microstructure of the composites correspond to different effects. The multiple parameters of the plots of wear and friction are transformed into their contour curves. The mechanism transition maps aid in understanding the influence of various test conditions and composite compositions on the contact surfaces in the space-time framework of wear.

Author(s):  
K. D. Khromushkin ◽  
B. G. Ushakov ◽  
A. V. Kochergin ◽  
R. A. Suleev ◽  
O. N. Parmenova

The paper presents experimental data on the study of the friction parameters of hard alloys in sliding friction units, including the heating temperature, surface roughness, wear and friction coefficient, depending on the duration of the test and the friction path.


Author(s):  
Albinas Andriusis ◽  
Vytenis Jankauskas ◽  
Juozas Padgurskas ◽  
Raimundas Rukuiza ◽  
Audrius Zunda

Electro-pulse spraying (EPS) is the coating technology of “electric explosion of conductive materials” when high-voltage and powerful impulse flows through a wire conductor. Object of our investigation — tribological properties of sliding pairs with copper micro-coats made by EPS after one time explosion. Small-grained dense structure coat with evaluated thickness about 4–6 ?m was obtained. Tribological tests, performed at marginal lubrication with multi-stage load, shows that using EPS-specimens the value of friction coefficient is lower as control version. At instantaneous setting of load for long-term running the copper films adopts well to the change of load. The wear of friction pairs according to worn mass show that EPS-specimens worn 79% less than CV-specimens. The investigations point out that copper micro-coats have better tribological properties comparing to control version of friction pairs.


2022 ◽  
Vol 165 ◽  
pp. 107277
Author(s):  
Md Golam Rasul ◽  
Alper Kiziltas ◽  
Md Shafkat Bin Hoque ◽  
Arnob Banik ◽  
Patrick E. Hopkins ◽  
...  

2007 ◽  
Vol 80 (8) ◽  
pp. 1438-1440 ◽  
Author(s):  
B. M. Ginzburg ◽  
D. G. Tochil’nikov ◽  
A. K. Pugachev ◽  
V. M. Oichenko ◽  
Sh. Tuichiev ◽  
...  

Author(s):  
Fei Guo ◽  
Fan Wu ◽  
Fangyong Wu ◽  
Yuming Wang

The tribological properties of self-mated silicon carbide, self-mated cemented carbide, and cemented carbide/silicon carbide under water lubrication were studied. The three matched pairs could achieve low-friction coefficients (0.01–0.03) under certain test conditions. Additionally, the dependence of the friction coefficients on the rotation speed and load were measured. By combining these results with the observed surface topography and wear measurements, it was determined that the three matched pairs were in the hydrodynamic lubrication. In addition, combined with experiments in ethylene glycol and PAO40, it was shown that the actual viscosity of the lubricant had a significant influence on the realization of low friction. Furthermore, matching materials had an influence on the tribological properties, which may be related to the surface wettability of the lubricant.


2014 ◽  
Vol 225 ◽  
pp. 115-122 ◽  
Author(s):  
Jacek Łubiński ◽  
Paweł Śliwiński

In the paper the method and results are presented of the testing of tribological performance of a number of hard materials available commercially. The tests consisted in unidirectional sliding with liquid lubrication. The load and velocity regime chosen were similar to a standard four-ball lubricity test with constant velocity and load increasing over time. The regime was modified in such a way that over the initial part of the test both the velocity and load were linearly increased until a certain stable level of each input parameter was reached and the test was then continued till the termination due to chosen criteria. The materials used were high alloy tool steels and sintered carbides, normally used in working of metals by cutting. The lubricants environmentally inert or friendly fluids: water, mineral oil-in-water emulsion and vegetable oil. In the tests, typical sliding friction parameters were recorded, later evaluated on the basis of multiple parameters observable within the test such as e.g. maximum load and velocity reached, calculated maximum surface pressure or presence and amplitude of friction induced vibrations. In the group of material/material/lubricant combinations a ranking was created for each parameter in the assessment set by awarding points for performance. Best performance was granted the least amount of points. Overall performance was then judged by the accumulated number of points. The materials, which were evaluated as performing best have been chosen as input materials for the design and manufacture of a prototype motor for later laboratory and field testing.


2013 ◽  
Vol 712-715 ◽  
pp. 7-11 ◽  
Author(s):  
Mazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Michael Sсheffler

This paper presents research of influence electrolyte plasma carbonitriding on tribological properties of R6M5 high-speed steel. Shows perspectiveness of carbonitriding high-speed steels in electrolyte plasma. The results of research demonstrated increasing wear-resistance of R6M5 steel after carbonitriding in electrolyte plasma. Under the same test conditions by the method of scratch-test have been determined that the depth of the scar of a modified layer has become less in comparison with the original sample, which indicates a significant increase of wear-resistance and hardness of the surface carbonitriding layer R6М5 steel. It was set that after electrolytic-plasma carbonitriding abrasive wear-resistance of the surface layers of R6M5 steel is increased by 25%. Introduction


Sign in / Sign up

Export Citation Format

Share Document