scholarly journals Molecular diagnosis of SARS-CoV-2 in seminal fluid

Author(s):  
D. Paoli ◽  
F. Pallotti ◽  
G. Nigro ◽  
L. Mazzuti ◽  
M. N. Hirsch ◽  
...  

Abstract Purpose Due to relevant repercussions on reproductive medicine, we aimed to evaluate feasibility of RT-PCR as a detection method of SARS-CoV-2 RNA in seminal fluid. Methods A qualitative determination of the RT-PCR assays in semen was performed through different approaches: (1) efficiency of RNA extraction from sperm and seminal plasma was determined using PRM1 and PRM2 mRNA and a heterologous system as control; (2) samples obtained by diluting viral preparation from a SARS-CoV-2 panel (virus cultured in Vero E6 cell lines) were tested; (3) viral presence in different fractions of seminal fluid (whole sample, seminal plasma and post-centrifugation pellet) was evaluated. Semen samples from mild and recovered COVID-19 subjects were collected by patients referring to the Infectious Disease Department of the Policlinico Umberto I Hospital - “Sapienza” University of Rome. Control subjects were recruited at the Laboratory of Seminology-Sperm Bank “Loredana Gandini'' of the same hospital. Results The control panel using viral preparations diluted in saline and seminal fluid showed the capability to detect viral RNA presence with Ct values depending on the initial viral concentration. All tested semen samples were negative for SARS-CoV-2, regardless of the nasopharyngeal swab result or seminal fluid fraction. Conclusion These preliminary data show that RT-PCR for SARS-CoV-2 RNA testing appears to be a feasible method for the molecular diagnosis of SARS-CoV-2 in seminal fluid, supported by results of the control panel. The ability to detect SARS-CoV-2 in semen is extremely important for reproductive medicine, especially in assisted reproductive technology and sperm cryopreservation.

Author(s):  
D. Paoli ◽  
F. Pallotti ◽  
G. Nigro ◽  
A. Aureli ◽  
A. Perlorca ◽  
...  

Abstract Purpose Sperm cryopreservation is fundamental in the management of patients undergoing gonadotoxic treatments. Concerns have risen in relation to SARS-CoV-2 and its potential for testicular involvement, since SARS-CoV-2-positive cryopreserved samples may have unknown effects on fertilization and embryo safety. This study therefore aimed to analyze the safety of sperm cryopreservation for cancer patients after the onset of the pandemic in Italy, through assessment of the risk of SARS-CoV-2 exposure and viral RNA testing of semen samples. Methods We recruited 10 cancer patients (mean age 30.5 ± 9.6 years) referred to our Sperm Bank during the Italian lockdown (from March 11th to May 4th 2020) who had not undergone a nasopharyngeal swab for SARS-CoV-2 testing. Patients were administered a questionnaire on their exposure to COVID-19, and semen samples were taken. Before cryopreservation, SARS-CoV-2 RNA was extracted from a 150 µl aliquot of seminal fluid in toto using QIAamp viral RNA kit (Qiagen) and amplified by a real time RT PCR system (RealStar SARS-CoV2 RT PCR, Altona Diagnostics) targeting the E and S genes. Results The questionnaire and medical interview revealed that all patients were asymptomatic and had had no previous contact with COVID-19 infected patients. All semen samples were negative for SARS-CoV-2 RNA. Conclusion This preliminary assessment suggests that a thorough evaluation (especially in the setting of a multidisciplinary team) and molecular confirmation of the absence of SARS-CoV-2 in seminal fluid from asymptomatic cancer patients may assist in ensuring the safety of sperm cryopreservation.


2020 ◽  
Vol 15 (15) ◽  
pp. 1483-1487
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Sudha Ananth ◽  
Kimya Jones ◽  
...  

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Allen Wing-Ho Chu ◽  
Cyril Chik-Yan Yip ◽  
Wan-Mui Chan ◽  
Anthony Chin-Ki Ng ◽  
Dream Lok-Sze Chan ◽  
...  

SARS-CoV-2 RT-PCR with pooled specimens has been implemented during the COVID-19 pandemic as a cost- and manpower-saving strategy for large-scale testing. However, there is a paucity of data on the efficiency of different nucleic acid extraction platforms on pooled specimens. This study compared a novel automated high-throughput liquid-based RNA extraction (LRE) platform (PHASIFYTM) with a widely used magnetic bead-based total nucleic acid extraction (MBTE) platform (NucliSENS® easyMAG®). A total of 60 pools of nasopharyngeal swab and 60 pools of posterior oropharyngeal saliva specimens, each consisting of 1 SARS-CoV-2 positive and 9 SARS-CoV-2 negative specimens, were included for the comparison. Real-time RT-PCR targeting the SARS-CoV-2 RdRp/Hel gene was performed, and GAPDH RT-PCR was used to detect RT-PCR inhibitors. No significant differences were observed in the Ct values and overall RT-PCR positive rates between LRE and MBTE platforms (92.5% (111/120] vs 90% (108/120]), but there was a slightly higher positive rate for LRE (88.3% (53/60]) than MBTE (81.7% (49/60]) among pooled saliva. The automated LRE method is comparable to a standard MBTE method for the detection of SAR-CoV-2 in pooled specimens, providing a suitable alternative automated extraction platform. Furthermore, LRE may be better suited for pooled saliva specimens due to more efficient removal of RT-PCR inhibitors.


2021 ◽  
Author(s):  
Sally A. Mahmoud ◽  
Esra Ibrahim ◽  
Subhashini Ganesan ◽  
Bhagyashree Thakre ◽  
Juliet G Teddy ◽  
...  

AbstractIn this current COVID - 19 pandemic, there is a dire need for cost effective and less time-consuming alternatives for SARS-COV-2 testing. The RNA extraction free method for detecting SARS-COV-2 in saliva is a promising option, this study found that it has high sensitivity (85.34%), specificity (95.04%) and was comparable to the gold standard nasopharyngeal swab. The method showed good percentage of agreement (kappa coefficient) 0.797 between salivary and NPS samples. However, there are variations in the sensitivity and specificity based on the RT-PCR kit used. The Thermo Fischer-Applied biosystems showed high sensitivity, PPV and NPV but also showed higher percentage of invalid reports. Whereas the BGI kit showed high specificity, better agreement (kappa coefficient) between the results of saliva and NPS samples and higher correlation between the Ct values of saliva and NPS samples. Thus, the RNA extraction free method for salivary sample serves as an effective alternative for SARS-CoV 2-testing.


2020 ◽  
Author(s):  
Paula Asprino ◽  
Fabiana Bettoni ◽  
Anamaria Camargo ◽  
Diego Coelho ◽  
Guilherme Coppini ◽  
...  

I.ABSTRACTScalable, cost-effective screening methods are an essential tool to control SARS-CoV-2 spread. We have developed a straight saliva-based, RNA extraction-free, RT-LAMP test that is comparable to current nasopharyngeal swab RT-PCR tests in both sensitivity and specificity. Using a 2-step readout of fluorescence and melting-point curve analysis, the test is scalable to more than 30,000 tests per day with average turnaround time of less than 3 hours. The test was validated using samples from 244 symptomatic patients, and showed sensitivity of 78.9% (vs. 85.5% for nasopharyngeal swabs RT-PCR) and specificity of 100% (vs. 100% for nasopharyngeal swabs RT-PCR). Our method is therefore accurate, robust, time and cost effective and therefore can be used for screening of SARS-CoV-2.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
H Chabrolles ◽  
H Pons ◽  
L Chaput ◽  
A Brebion ◽  
M Fiot ◽  
...  

Abstract Study question How to ensure a reliable and accurate detection of SARS-CoV–2 in seminal plasma and spermatozoa fractions of human sperm samples? Summary answer This RT-PCR assay showed high sensibility, repeatability and reproducibility for SARS-CoV–2 detection in seminal plasma and spermatozoa fractions, with a detection limit of 17 genomes/reaction. What is known already SARS-CoV–2 pandemic brings numerous concerns, such as the safety of gametes for patients undergoing assisted reproductive technologies, fertility preservation or sperm donation. Transient viremia and expression of SARS-CoV–2 receptors in testis and accessory glands bring the question of the presence of the virus in sperm samples. Moreover, the contamination during sperm collection may be possible. The few available studies about this issue mostly showed the absence of SARS-CoV–2 detection in semen of COVID–19 patients, except one reported study. All these studies performed SARS-CoV–2 detection with RT-PCR assays approved for naso-pharyngeal swabs, without a process specifically validated for semen fractions. Study design, size, duration Method validation was conducted between July 2020 and January 2021. SARS-CoV–2 direct detection was performed according to the French Society of Microbiology guidelines (SFM). Repeatability (n = 6), reproducibility (n = 3), limit of quantification (n = 2) and of detection (n = 6) were evaluated in seminal plasma (SP) and spermatozoa samples isolated after density gradient centrifugation and cryopreserved. In addition, variability of the whole analytical method efficiency was evaluated in samples of men with normal (n = 6) or altered sperm parameters (n = 6). Participants/materials, setting, methods Samples were surplus semen obtained from men undergoing routine semen analysis after granting informed consent. Assays were performed on SP and frozen spermatozoa fractions. After automated RNA extraction (MGISP–960, MGI-Tech®), real-time RT-PCR was performed using the one-step multiplex TaqPath COVID–19 kit (ThermoFisher®) targeting three viral regions (ORF1, nucleocapsid-N and spike-S proteins). An exogenous internal control was added before RNA extraction. Positive samples and dilution ranges were prepared with a standard (SARS-CoV–2 inactivated virus, QnosticTM Randox®). Main results and the role of chance RT-PCR assay applied for human sperm samples has been previously validated and is routinely used for SARS-CoV–2 detection in naso-pharyngeal swabs. We evaluated the efficiency of RNA extraction and RT-PCR for SARS-CoV–2 detection in semen fractions. The qualitative and quantitative performance of the whole analytical method was validated with an accuracy profile for SP and spermatozoa fractions. Overall, for repeatability, the standard deviation (SD) of the cycle threshold (Ct) was lower than 0.40 for the strong positive sample and 0.50 for the low positive one. An exception was observed for the S target of the low positive SP samples (SD = 3) which was consistent with S being the less sensitive target of the assay. For reproducibility, SD of the Ct was lower than 0.30 for the strong positive sample and 0.80 for the low positive, except for the S target of the low positive (SD = 1.5). The linearity range was determined for N target, the most sensitive target of the RT-PCR assay. It layed between 5200 and 52 SARS-CoV–2 genomes/reaction. The limit of detection of the RT-PCR assay was 17 viral genomes/reaction. Equal efficiency of the assay was observed for SP and spermatozoa independently of semen parameters (normal and altered sperm parameters). Limitations, reasons for caution: Our detection method was validated for the whole process: RNA extraction (reagents and system), RT-PCR (reagents and thermocycler QuantStudio 5TM) and for both SP and frozen spermatozoa fractions. Variability might be observed with a different extraction system or a different type of biological sample. Wider implications of the findings: This validated RT-PCR assay enables accurate and reliable screening of SARS-CoV–2 in SP and spermatozoa fractions, mandatory to investigate the presence of the virus in semen samples of patients undergoing assisted reproductive techniques, fertility preservation or sperm donation, and to ensure viral safety in the cryobanking process during covid–19 pandemic. Trial registration number EudraCT 2020-A01409–30


Author(s):  
Zhen Zhao ◽  
Haodong Cui ◽  
Wenxing Song ◽  
Xiaoling Ru ◽  
Wenhua Zhou ◽  
...  

1AbstractThe ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) originating from Wuhan, China, draws worldwide concerns due to its long incubation period and strong infectivity. Although RT-PCR-based molecular diagnosis techniques are being widely applied for clinical diagnosis currently, timely and accurate diagnosis are still limited due to labour intensive and time-consuming operations of these techniques. To address the issue, herein we report the synthesis of poly (amino ester) with carboxyl groups (PC)-coated magnetic nanoparticles (pcMNPs), and the development of pcMNPs-based viral RNA extraction method for the sensitive detection of COVID-19 causing virus, the SARS-CoV-2. This method combines the lysis and binding steps into one step, and the pcMNPs-RNA complexes can be directly introduced into subsequent RT-PCR reactions. The simplified process can purify viral RNA from multiple samples within 20 min using a simple manual method or an automated high-throughput approach. By identifying two different regions (ORFlab and N gene) of viral RNA, a 10-copy sensitivity and a strong linear correlation between 10 and 105 copies of SARS-CoV-2 pseudovirus particles are achieved. Benefitting from the simplicity and excellent performances, this new extraction method can dramatically reduce the turn-around time and operational requirements in current molecular diagnosis of COVID-19, in particular for the early clinical diagnosis.


2020 ◽  
Vol 58 (6) ◽  
Author(s):  
Mario Poljak ◽  
Miša Korva ◽  
Nataša Knap Gašper ◽  
Kristina Fujs Komloš ◽  
Martin Sagadin ◽  
...  

ABSTRACT Laboratories are currently witnessing extraordinary demand globally for sampling devices, reagents, consumables, and diagnostic instruments needed for timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To meet diagnostic needs as the pandemic grows, the U.S. Food and Drug Administration (FDA) recently granted several commercial SARS-CoV-2 tests Emergency Use Authorization (EUA), but manufacturer-independent evaluation data are scarce. We performed the first manufacturer-independent evaluation of the fully automated sample-to-result two-target test cobas 6800 SARS-CoV-2 (cobas) (Roche Molecular Systems, Branchburg, NJ), which received U.S. FDA EUA on 12 March 2020. The comparator was a standardized 3-h SARS-CoV-2 protocol, consisting of RNA extraction using an automated portable instrument, followed by a two-target reverse transcription real-time PCR (RT-PCR), which our laboratory has routinely used since January 2020 [V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, et al., Euro Surveill 25(3):pii=2000045, 2020, https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045]. cobas and the comparator showed overall agreement of 98.1% and a kappa value of 0.95 on an in-house validation panel consisting of 217 well-characterized retrospective samples. Immediate prospective head-to-head comparative evaluation followed on 502 samples, and the diagnostic approaches showed overall agreement of 99.6% and a kappa value of 0.98. A good correlation (r2 = 0.96) between cycle threshold values for SARS-CoV-2-specific targets obtained by cobas and the comparator was observed. Our results showed that cobas is a reliable assay for qualitative detection of SARS-CoV-2 in nasopharyngeal swab samples collected in the Universal Transport Medium System (UTM-RT) (Copan, Brescia, Italy). Under the extraordinary circumstances that laboratories are facing worldwide, a safe diagnostic platform switch is feasible in only 48 h and in the midst of the COVID-19 pandemic if carefully planned and executed.


2020 ◽  
Author(s):  
Priya Kannian ◽  
Pasuvaraj Mahanathi ◽  
Veeraraghavan Ashwini

SummarySevere acute respiratory syndrome - coronavirus 2 (SARS-CoV2) is detected by a highly sensitive molecular method, reverse transcriptase-polymerase chain reaction (RT-PCR) from nasopharyngeal swab (NPS) samples collected in 2-3ml of viral transport medium (VTM). Unlike body fluids, NPS samples are undermined by high variability in the amount of cells that get suspended into the VTM. Hence, the cell density used for RNA extraction becomes an important analytical variable that contributes to the overall sensitivity of the RT-PCR. In this study, we compared the sensitivity of SARS-CoV2 RT-PCR in 50 NPS samples collected from in-patients of the COVID wards using the concentration and direct methods. The concentration method detected the viral RNA in all 50 samples, while the direct method was positive in only 41 (82%) samples (p=0.003). Additionally, the Ct values were lower in the direct method compared to concentration method among the 41 positive samples (p=0.03 for N gene and p=0.04 for RdRp gene). The mean CV% was also ≥10%. Thus, the concentration of the cells prior to RNA extraction drastically improves the sensitivity of detection of SARS-CoV2 in NPS samples.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S163-S164
Author(s):  
Ahmed Babiker ◽  
Heath L Bradley ◽  
Victoria D Stittleburg ◽  
Autum Key ◽  
Colleen Kraft ◽  
...  

Abstract Background Broad testing for respiratory viruses among persons under investigation (PUI) for SARS-CoV-2 is performed inconsistently, limiting our understanding of alternative infections and co-infections in these patients. Here, we used unbiased metagenomic next-generation sequencing (mNGS) to assess the frequencies of 1) alternative viral infections in SARS-CoV-2 RT-PCR negative PUIs and 2) viral co-infections in SARS-CoV-2 RT-PCR positive PUIs. Methods A convenience sample set was selected from PUIs who were tested for SARS-CoV-2 in the Emory Healthcare system during the first 2 months of the pandemic from 02/26-04/23/20. Laboratory results were extracted by chart review; Flu/RSV and multiplex respiratory pathogen PCRs had been performed at the discretion of treating physicians. Excess nasopharyngeal swab samples were retrieved within 72 hours of collection and underwent RNA extraction and SARS-CoV-2 testing by triplex RT-PCR. mNGS was performed by DNAse treatment, random primer cDNA synthesis, Nextera XT tagmentation, and high-depth Illumina sequencing. Reads underwent taxonomic classification by KrakenUniq, as implemented in viral-ngs. Results 53 PUIs were included, 30 negative and 23 positive for SARS-CoV-2 by RT-PCR. Among SARS-CoV-2 negative PUIs, 28 (93%) underwent clinical testing for alternative infections, and 8 (29%) tested positive for another respiratory virus. In all cases, mNGS identified the same virus (Table 1). In another 3 PUIs, mNGS identified two viruses that were not tested for and one that was missed by routine testing. No SARS-CoV-2 was detected by mNGS among RT-PCR negative PUIs. Among SARS-CoV-2 RT-PCR positive PUIs, 18 (69%) underwent clinical testing for co-infections, and none were detected. mNGS did not identify any viral co-infections but did detect SARS-CoV-2 in all 23 PUIs. Table 1: Molecular and Metagenomic Testing of Persons Under Investigation Conclusion Unbiased mNGS offers the powerful opportunity to streamline testing for PUIs by assessing for SARS-CoV-2 and alternative infections simultaneously; this technique can also be used to identify co-infections, but none were observed in our study population. Interestingly, many PUIs had no infection identified on routine testing or mNGS, which may reflect inadequate sampling, rapid virus clearance, or a non-viral process. Disclosures All Authors: No reported disclosures


Sign in / Sign up

Export Citation Format

Share Document